University of South Florida University of South Florida
Digital Commons @ University of Digital Commons @ University of
South Florida South Florida
Textbooks Collection Tampa Library
12-2013
Student Solutions Manual for Elementary Differential Equations Student Solutions Manual for Elementary Differential Equations
and Elementary Differential Equations with Boundary Value and Elementary Differential Equations with Boundary Value
Problems Problems
William F. Trench
Trinity University
, wtrench@trinity.edu
Follow this and additional works at: https://digitalcommons.usf.edu/oa_textbooks
Part of the Mathematics Commons, and the Ordinary Differential Equations and Applied Dynamics
Commons
Recommended Citation Recommended Citation
Trench, William F., "Student Solutions Manual for Elementary Differential Equations and Elementary
Differential Equations with Boundary Value Problems" (2013).
Textbooks Collection
. 7.
https://digitalcommons.usf.edu/oa_textbooks/7
This Book is brought to you for free and open access by the Tampa Library at Digital Commons @ University of
South Florida. It has been accepted for inclusion in Textbooks Collection by an authorized administrator of Digital
Commons @ University of South Florida. For more information, please contact [email protected].
STUDENT SOLUTIONS MANUAL FOR
ELEMENTARY
DIFFEREN TIAL EQUATIONS
AND
ELEMENTARY
DIFFEREN TIAL EQUATIONS
WITH BOUNDARY VALUE
PROBLEMS
William F. Trench
Andrew G. Cowles Disting uished Professor Emeritus
Department of Ma thematics
Trinity University
San Anto nio, Texas, USA
wtrench@trinity.edu
This book has been judged to meet the evaluation criteria set by the Edi-
torial Board of the American Insti tute of Mathematics in connection with
the Institute’s Open Textboo k Init iative. It may b e copied, modified, re-
distributed, translated, a nd built upo n subject to the Creative Commons
Attributi on-NonCommercial-ShareAlike 3.0 Unported License.
This book was published previously by Brooks/Cole Thomson Learning
Reproduct ion is permitted for any valid noncommercial educational, mathematical, or scientific purpose.
However, charges for profit beyond reasonabl e printing costs are p rohibited.
TO BEVERLY
Contents
Chapter 1 Introduction 1
1.2 First Order Equations 1
Chapter 2 First Order Equations 5
2.1 Linear First Order Equations 5
2.2 Separable Equations 8
2.3 Existence and Uniqueness of Solutions of Nonlinear Equati ons 11
2.4 Transformation of Nonlinear Equations into Separable Equat ions 13
2.5 Exact Equations 17
2.6 Integrating Factors 21
Chapter 3 Numerical Methods 25
3.1 Euler’s Method 25
3.2 The Improved Euler Method and Related Methods 29
ii
Contents
3.3 The Runge-Kutta Method 34
Chapter 4 Applications of First Order Equations 39
4.1 Growth and Decay 39
4.2 Cooling and Mixing 40
4.3 Elementary Mechanics 43
4.4 Autonomous Second Order Equations 45
4.5 Applications to Curves 46
Chapter 5 Linear Second Order Equations 51
5.1 Homogeneous Linear Equations 51
5.2 Constant Coefficient Homogeneous Equations 55
5.3 Nonhomgeneous Linear Equations 58
5.4 The Method of Undetermined Coefficients I 60
5.5 The Method of Undetermined Coefficients II 64
5.6 Reduction of Order 75
5.7 Varia tion of Parameters 79
Chapter 6 Applcations of Linear Second Order Equations 85
6.1 Spring Problems I 85
6.2 Spring Problems II 87
6.3 The RLC Circuit 89
6.4 Motion Under a Central Force 90
Chapter 7 Series Solutions of Linear Second Order Equations 108
7.1 Review of Power Series 91
7.2 Series Solutions Near an Ordinary Point I 93
7.3 Series Solutions Near an Ordinary Point II 96
7.4 Regular Singular Points; Eul er Equations 102
7.5 The Method of Frobenius I 103
7.6 The Method of Frobenius II 108
7.7 The Method of Frobenius III 118
Chapter 8 Laplace Transforms 125
8.1 Introduction to the Laplace Transform 125
8.2 The Inverse Laplace Transform 127
8.3 Solution of Initial Value Problems 134
8.4 The Unit Step Function 140
8.5 Constant Coefficient Equations with Piecewise Continuous Forcing
Functions 143
8.6 Convolution 152
Contents
iii
8.7 Constant Cofficient Equations with Impulses 55
Chapter 9 Linear Higher Order E quations 159
9.1 Introduction to Linear Hi gher Order Equations 159
9.2 Hig her Order Constant Coefficient Homogeneous Equations 171
9.3 Undetermined Coefficients for Higher Order Equations 175
9.4 Varia tion of Parameters for Higher Order Equations 181
Chapter 10 Linear Systems of Differential Equations 221
10.1 Introduction to Systems of Di fferential Equations 191
10.2 Linear Systems of Differential Equations 192
10.3 Basic Theory of Homogeneous Linear Systems 193
10.4 Constant Coefficient Homogeneous Systems I 194
10.5 Constant Coefficient Homogeneous Systems II 201
10.6 Constant Coefficient Homogeneous Systems II 245
10.7 Vari ation of Parameters for Nonhomogeneous Linear Systems 218
Chapter 221
11.1 Eigenvalue Problems for y
00
C y D 0 221
11.2 Fourier Expansions I 223
11.3 Fourier Expansions II 229
Chapter 12 Fourier Solutions of Parti al Differential Equations 239
12.1 The Heat Equation 239
12.2 The Wave Equation 247
12.3 Laplace’s Equation in Rectangular Coordinates 260
12.4 Laplace’s Equation in Polar Coo rdinates 270
Chapter 13 B oundary Value Problems for Second Order Ordinary Differential Equations 273
13.1 Two-Point Boundary Value Problems 273
13.2 Sturm-Liouville Problems 279
CHAPTER 1
Introduction
1.2 BASIC CONCEPTS
1.2.2. ( a) If y D ce
2x
, then y
0
D 2ce
2x
D 2y.
(b) If y D
x
2
3
C
c
x
, then y
0
D
2x
3
c
x
2
, so xy
0
C y D
2x
2
3
c
x
C
x
2
3
C
c
x
D x
2
.
(c) If
y D
1
2
C ce
x
2
; then y
0
D 2xce
x
2
and
y
0
C 2xy D 2xce
x
2
C 2x
1
2
C ce
x
2
D 2xce
x
2
C x C 2cxe
x
2
D x:
(d) If
y D
1 C ce
x
2
=2
1 ce
x
2
=2
then
y
0
D
.1 ce
x
2
=2
/.cxe
x
2
=2
/ .1 C ce
x
2
=2
/cxe
x
2
=2
.1 cxe
x
2
=2
/
2
D
2cxe
x
2
=2
.1 ce
x
2
=2
/
2
and
y
2
1 D
1 C ce
x
2
=2
1 ce
x
2
=2
!
2
1
D
.1 C ce
x
2
=2
/
2
.1 ce
x
2
=2
/
2
.1 ce
x
2
=2
/
2
D
4ce
x
2
=2
.1 ce
x
2
=2
/
2
;
1
2 Chapter 1
Basic Concepts
so
2y
0
C x.y
2
1/ D
4cx C4cx
.1 ce
x
2
=2
/
2
D 0:
(e) If y D tan
x
3
3
C c
, then y
0
D x
2
sec
2
x
3
3
C c
D x
2
1 C tan
2
x
3
3 C c

D x
2
.1 C y
2
/.
(f) If
y D .c
1
C c
2
x/e
x
C sin x C x
2
; then
y
0
D .c
1
C 2c
2
x/e
x
C cos x C 2x;
y
0
D .c
1
C 3c
2
x/e
x
sin x C 2;
and y
00
2y
0
C y D c
1
e
x
.1 2 C 1/ C c
2
xe
x
.3 4 C 1/
sin x 2 cos x C sin x C 2 4x C x
2
D 2 cos x C x
2
4x C 2:
(g) If y D c
1
e
x
Cc
2
x C
2
x
, then y
0
D c
1
e
x
Cc
2
2
x
2
and y
00
D c
1
e
x
C
4
x
3
, so .1x/y
00
Cxy
0
y D
c
1
.1 x C x 1/ C c
2
.x x/ C
4.1 x/
x
3
2
x
2
x
D
4.1 x x
2
/
x
3
(h) If y D
c
1
sin x C c
2
cos x
x
1=2
C 4x C 8 then y
0
D
c
1
cos x c
2
sin x
x
1=2
c
1
sin x C c
2
cos x
2x
3=2
C 4 and
y
00
D
c
1
sin x C c
2
cos x
x
1=2
c
1
sin x c
2
cos x
x
3=2
C
3
4
c
1
sin x C c
2
cos x
x
5=2
, so x
2
y
00
Cxy
0
C
x
2
1
4
y D
c
1
x
3=2
sin x x
1=2
cos x C
3
4
x
1=2
sin x C x
1=2
cos x
1
2
x
1=2
sin x C x
3=2
sin x
1
4
x
1=2
sin x
C c
2
x
3=2
cos x C x
1=2
sin x C
3
4
x
1=2
cos x
x
1=2
sin x
1
2
x
1=2
cos x C x
3=2
cos x
1
4
x
1=2
cos x
C4x C
x
2
1
4
.4x C8/ D 4x
3
C8x
2
C
3x 2.
1.2.4. ( a) If y
0
D xe
x
, then y D xe
x
C
R
e
x
dx C c D .1 x/e
x
C c, and y.0/ D 1 ) 1 D 1 C c,
so c D 0 and y D .1 x/e
x
.
(b) If y
0
D x sin x
2
, then y D
1
2
cos x
2
C c; y
r
2
D 1 ) 1 D 0 C c, so c D 1 and
y D 1
1
2
cos x
2
.
(c) Write y
0
D tan x D
sin x
cos x
D
1
cos x
d
dx
.cos x/. Integrating this yields y D ln jcos xj C c;
y.=4/ D 3 ) 3 D ln .cos.=4// C c, or 3 D ln
p
2 C c, so c D 3 l n
p
2, so y D ln.jcos xj/ C
3 ln
p
2 D 3 ln.
p
2jcos xj/.
(d) If y
00
D x
4
, then y
0
D
x
5
5
C c
1
; y
0
.2/ D 1 )
32
5
C c
1
D 1 ) c
1
D
37
15
, so y
0
D
x
5
5
37
15
. Therefore, y D
x
6
30
37
15
.x 2/ C c
2
; y.2/ D 1 )
64
30
C c
2
D 1 ) c
2
D
47
15
, so
y D
47
15
37
5
.x 2/ C
x
6
30
.
(e) (A)
R
xe
2x
dx D
xe
2x
2
1
2
Z
e
2x
dx D
xe
2x
2
e
2x
4
. Therefore, y
0
D
xe
2x
2
e
2x
4
C c
1
;
y
0
.0/ D 1 )
1
4
C c
1
D
5
4
) c
1
D
5
4
, so y
0
D
xe
2x
2
e
2x
4
C
5
4
; Usi ng (A) again, y D
xe
2x
4
e
2x
8
e
2x
8
C
5
4
x C c
2
D
xe
2x
4
e
2x
4
C
5
4
x C c
2
; y.0/ D 7 )
1
4
C c
2
D 7 ) c
2
D
29
4
, so
y D
xe
2x
4
e
2x
4
C
5
4
x C
29
4
.
(f) (A)
R
x sin x dx D x cos x C
R
cos x dx D x cos x C sin x and (B)
R
x cos x dx D x sin x
R
sin x dx D x sin x Ccos x. If y
00
D x sin x, then (A ) implies that y
0
D x cos x sin x Cc
1
; y
0
.0/ D
3 ) c D 3, so y
0
D x cos x sin x 3. Now (B) implies that y D x sin x Ccos x Ccos x 3x Cc
2
D
x sin x C 2 cos x 3x C c
2
; y.0/ D 1 ) 2 C c
2
D 1 ) c
2
D 1, so y D x sin x C 2 cos x 3x 1.
Section 1.2
Basic Concepts
3
(g) If y
000
D x
2
e
x
, then y
00
D
R
x
2
e
x
dx D x
2
e
x
2
R
xe
x
dx D x
2
e
x
2xe
x
C 2e
x
C c
1
;
y
00
.0/ D 3 ) 2 Cc
1
D 3 ) c
1
D 1, so ( A ) y
00
D .x
2
2x C2/e
x
C1. Si nce
R
.x
2
2x C2/e
x
dx D
.x
2
2x C 2/e
x
R
.2x 2/e
x
dx D .x
2
2x C 2/e
x
.2x 2/e
x
C 2e
x
D .x
2
4x C 6/e
x
,
(A) implies that y
0
D .x
2
4x C 6/e
x
C x C c
2
; y
0
.0/ D 2 ) 6 C c
2
D 2 ) c
2
D 8, so ( B)
y
0
D .x
2
4x C6/e
x
Cx 8; Since
R
.x
2
4x C6/e
x
dx D .x
2
4x C6/e
x
R
.2x 4/e
x
dx D .x
2
4xC6/e
x
.2x 4/e
x
C2e
x
D .x
2
6xC12/e
x
, (B) implies that y D .x
2
6xC12/e
x
C
x
2
2
8xCc
3
;
y.0/ D 1 ) 12 C c
3
D 1 ) c
3
D 11, so y D .x
2
6x C12/e
x
C
x
2
2
8x 11.
(h) If y
000
D 2 C sin 2x, then y
00
D 2x
cos 2x
2
C c
1
; y
00
.0/ D 3 )
1
2
C c
1
D 3 ) c
1
D
7
2
,
so y
00
D 2x
cos 2x
2
C
7
2
. Then y
0
D x
2
sin 2x
4
C
7
2
x C c
2
; y
0
.0/ D 6 ) c
2
D 6, so
y
0
D x
2
sin 2x
4
C
7
2
x6. Then y D
x
3
3
C
cos 2x
8
C
7
4
x
2
6xCc
3
; y.0/ D 1 )
1
8
Cc
3
D 1 ) c
3
D
7
8
,
so y D
x
3
3
C
cos 2x
8
C
7
4
x
2
6x C
7
8
.
(i) If y
000
D 2x C1, then y
00
D x
2
Cx Cc
1
; y
00
.2/ D 7 ) 6 Cc
1
D 7 ) c
1
D 1; so y
00
D x
2
Cx C1.
Then y
0
D
x
3
3
C
x
2
2
C.x 2/ Cc
2
; y
0
.2/ D 4 )
14
3
Cc
2
D 4 ) c
2
D
26
3
, so y
0
D
x
3
3
C
x
2
2
C
.x 2/
26
3
. Then y D
x
4
12
C
x
3
6
C
1
2
.x 2/
2
26
3
.x 2/Cc
3
; y.2/ D 1 )
8
3
Cc
3
D 1 ) c
3
D
5
3
,
so y D
x
4
12
C
x
3
6
C
1
2
.x 2/
2
26
3
.x 2/
5
3
.
1.2.6. (a) If y D x
2
.1 Cln x/, then y.e/ D e
2
.1 Cln e/ D 2e
2
; y
0
D 2x.1 Cln x/ Cx D 3x C2x ln x,
so y
0
.e/ D 3e C 2e ln e D 5e; (A) y
00
D 3 C 2 C 2 ln x D 5 C 2 ln x. Now, 3xy
0
4y D 3x.3x C
2x ln x/ 4x
2
.1 C ln x/ D 5x
2
C 2x
2
ln x D x
2
y
00
, from (A).
(b) If y D
x
2
3
C x 1, t hen y.1/ D
1
3
C 1 1 D
1
3
; y
0
D
2
3
x C 1, so y
0
.1/ D
2
3
C 1 D
5
3
; (A)
y
00
D
2
3
. Now x
2
xy
0
C y C 1 D x
2
x
2
3
x C 1
C
x
2
3
C x 1 C 1 D
2
3
x
2
D x
2
y
00
, from (A).
(c) If y D .1 C x
2
/
1=2
, then y.0/ D .1 C 0
2
/
1=2
D 1; y
0
D x.1 C x
2
/
3=2
, so y
0
.0/ D 0; (A)
y
00
D .2x
2
1/.1Cx
2
/
5=2
. Now, .x
2
1/y x.x
2
C1/y
0
D .x
2
1/.1Cx
2
/
1=2
x.x
2
C1/.x/.1C
x
2
/
3=2
D .2x
2
1/.1 C x
2
/
1=2
D y
00
.1 C x
2
/
2
from (A), so y
00
D
.x
2
1/y x.x
2
C 1/y
0
.x
2
C 1/
2
.
(d) If y D
x
2
1 x
, then y.1=2/ D
1=4
1 1=2
D
1
2
; y
0
D
x.x 2/
.1 x/
2
, so y
0
.1=2/ D
.1=2/.3=2/
.1 1=2/
2
D 3;
(A) y
00
D
2
.1 x/
3
. Now, (B ) x Cy D x C
x
2
1 x
D
x
1 x
and (C) xy
0
y D
x
2
.x 2/
.1 x/
2
x
2
1 x
D
x
2
.1 x/
2
. From (B) and (C), .x C y/.xy
0
y/ D
x
3
.1 x/
3
D
x
3
2
y
00
, so y
00
D
2.x C y/.xy
0
y/
x
3
.
1.2.8. (a) y D .x c/
a
is defined and x c D y
1=a
on .c; 1/; moreover, y
0
D a.x c/
a1
D
a
y
1=a
a1
D ay
.a1/=a
.
(b) if a > 1 or a < 0, then y 0 is a solution of (B) on .1; 1/.
1.2.10. (a) Since y
0
D c we must show that the right side of (B) reduces to c for all values of x in some
4 Chapter 1
Basic Concepts
inter val. If y D c
2
C cx C 2c C 1,
x
2
C 4x C 4y D x
2
C 4x C 4c
2
C 4cx C 8c C 4
D x
2
C 4.1 C c/x C 4.c
2
C 2c C 1/
D x
2
C 4.1 C c/ C 2.c C 1/
2
D .x C 2c C 2/
2
:
Therefore,
p
x
2
C 4x C 4y D x C 2c C 2 and the right side of (B) reduces to c if x > 2c 2.
(b) If y
1
D
x.x C 4/
4
, then y
0
1
D
x C 2
2
and x
2
C 4x C 4y D 0 fo r all x. Therefore, y
1
satisfies
(A) on .1; 1/.
CHAPTER 2
First Order Equations
2.1 LINEAR FIRST ORDER EQUATIONS
2.1.2.
y
0
y
D 3x
2
; jln jyj D x
3
C k; y D ce
x
3
. y D ce
.ln x/
2
=2
.
2.1.4.
y
0
y
D
3
x
; ln jyj D 3 ln jxj C k D ln jxj
3
C k; y D
c
x
3
.
2.1.6.
y
0
y
D
1 C x
x
D
1
x
1; jln jyj D ln jxj x C k; y D
ce
x
x
; y.1/ D 1 ) c D e;
y D
e
.x1/
x
.
2.1.8.
y
0
y
D
1
x
cot x; jln jyj D ln jxj ln jsin xj C k D ln jx sin xj C k; y D
c
x sin x
;
y.=2/ D 2 ) c D ; y D
x sin x
.
2.1.10.
y
0
y
D
k
x
; jln jyj D k ln jxj C k
1
D ln jx
k
j C k
1
; y D cjxj
k
; y.1/ D 3 ) c D 3;
y D 3x
k
.
2.1.12.
y
0
1
y
1
D 3; ln jy
1
j D 3x; y
1
D e
3x
; y D ue
3x
; u
0
e
3x
D 1; u
0
D e
3x
; u D
e
3x
3
Cc; y D
1
3
C ce
3x
.
2.1.14.
y
0
1
y
1
D 2x; ln jy
1
j D x
2
; y
1
D e
x
2
; y D ue
x
2
; u
0
e
x
2
D xe
x
2
; u
0
D x;
u D
x
2
2
C c; y D e
x
2
x
2
2
C c
.
2.1.16.
y
0
1
y
1
D
1
x
; ln jy
1
j D ln jxj; y
1
D
1
x
; y D
u
x
;
u
0
x
D
7
x
2
C 3; u
0
D
7
x
C 3x;
u D 7 ln jxj C
3x
2
2
C c; y D
7 ln jxj
x
C
3x
2
C
c
x
.
5
6 Chapter 2
First Order Equatio ns
2.1.18.
y
0
1
y
1
D
1
x
2x; ln jy
1
j D ln jxj x
2
; y
1
D
e
x
2
x
; y D
ue
x
2
x
;
u
0
e
x
2
x
D x
2
e
x
2
;
u
0
D x
3
; u D
x
4
4
C c; y D e
x
2
x
3
4
C
c
x
.
2.1.20.
y
0
1
y
1
D tan x; ln jy
1
j D ln jcos xj; y
1
D cos x; y D u cos x; u
0
cos x D cos x; u
0
D 1;
u D x C c; y D .x C c/ cos x.
2.1.22.
y
0
1
y
1
D
4x 3
.x 2/.x 1/
D
5
x 2
1
x 1
; ln jy
1
j D 5 ln jx 2j ln jx 1j D ln
ˇ
ˇ
ˇ
ˇ
.x 2/
5
x 1
ˇ
ˇ
ˇ
ˇ
;
y
1
D
.x 2/
5
x 1
; y D
u.x 2/
5
x 1
;
u
0
.x 2/
5
x 1
D
.x 2/
2
x 1
; u
0
D
1
.x 2/
3
; u D
1
2
1
.x 2/
2
C
c; y D
1
2
.x 2/
3
.x 1/
C c
.x 2/
5
.x 1/
.
2.1.24.
y
0
1
y
1
D
3
x
; ln jy
1
j D 3 ln jxj D ln jxj
3
; y
1
D
1
x
3
; y D
u
x
3
;
u
0
x
3
D
e
x
x
2
; u
0
D xe
x
;
u D xe
x
e
x
C c; y D
e
x
x
2
e
x
x
3
C
c
x
3
.
2.1.26.
y
0
1
y
1
D
4x
1 C x
2
; ln jy
1
j D 2 ln.1 C x
2
/ D ln.1 C x
2
/
2
; y
1
D
1
.1 C x
2
/
2
; y D
u
.1 C x
2
/
2
;
u
0
.1 C x
2
/
2
D
2
.1 C x
2
/
2
; u
0
D 2; u D 2x C c; y D
2x C c
.1 C x
2
/
2
; y.0/ D 1 )
c D 1; y D
2x C 1
.1 C x
2
/
2
.
2.1.28.
y
0
1
y
1
D cot x; ln jy
1
j D ln jsin xj; y
1
D
1
sin x
; y D
u
sin x
;
u
0
sin x
D cos x; u
0
D
sin x cos x; u D
sin
2
x
2
Cc; y D
sin x
2
Cc csc x; y.=2/ D 1 ) c D
1
2
; y D
1
2
.sin x C csc x/.
2.1.30.
y
0
1
y
1
D
3
x 1
; ln jy
1
j D 3 ln jx 1j D ln jx 1j
3
; y
1
D
1
.x 1/
3
; y D
u
.x 1/
3
;
u
0
.x 1/
3
D
1
.x 1/
4
C
sin x
.x 1/
3
; u
0
D
1
x 1
C sin x; u D ln jx 1j cos x C c; y D
ln jx 1j cos x C c
.x 1/
3
; y.0/ D 1 ) c D 0; y D
ln jx 1j cos x
.x 1/
3
.
2.1.32.
y
0
1
y
1
D
2
x
; ln jy
1
j D 2 ln jxj D ln.x
2
/; y
1
D x
2
; y D ux
2
; u
0
x
2
D x; u
0
D
1
x
;
u D ln jxjC c; y D x
2
.c ln jxj /; y.1/ D 1 ) c D 1; y D x
2
.1 ln x/.
2.1.34.
y
0
1
y
1
D
3
x 1
; ln jy
1
j D 3 ln jx 1j D ln jx 1j
3
; y
1
D
1
.x 1/
3
; y D
u
.x 1/
3
;
u
0
.x 1/
3
D
1 C .x 1/ sec
2
x
.x 1/
4
; u
0
D
1
x 1
Csec
2
x; u D ln jx1jCtan xCc; y D
ln jx 1j C tan x Cc
.x 1/
3
;
y.0/ D 1 ) c D 1; y D
ln jx 1j C tan x C 1
.x 1/
3
.
Section 2.1
Linear First Order Equations
7
2.1.36.
y
0
1
y
1
D
2x
x
2
1
; ln jy
1
j D ln j x
2
1j; y
1
D x
2
1; y D u.x
2
1/; u
0
.x
2
1/ D x;
u
0
D
x
x
2
1
; u D
1
2
ln jx
2
1j C c; y D .x
2
1/
1
2
ln jx
2
1j C c
; y.0/ D 4 ) c D 4;
y D .x
2
1/
1
2
ln jx
2
1j 4
.
2.1.38.
y
0
1
y
1
D 2x; ln jy
1
j D x
2
; y
1
D e
x
2
; y D ue
x
2
; u
0
e
x
2
D x
2
; u
0
D x
2
e
x
2
; u D
cC
Z
x
0
t
2
e
t
2
dt; y D e
x
2
c C
Z
x
0
t
2
e
t
2
dt
; y.0/ D 3 ) c D 3; y D e
x
2
3 C
Z
x
0
t
2
e
t
2
dt
.
2.1.40.
y
0
1
y
1
D 1; ln jy
1
j D x; y
1
D e
x
; y D ue
x
; u
0
e
x
D
e
x
tan x
x
; u
0
D
tan x
x
;
u D c C
Z
x
1
tan t
t
dt; y D e
x
c C
Z
x
1
tan t
t
dt
; y.1/ D 0 ) c D 0; y D e
x
Z
x
1
tan t
t
dt.
2.1.42.
y
0
1
y
1
D 1
1
x
; ln jy
1
j D x ln jxj; y
1
D
e
x
x
; y D
ue
x
x
;
u
0
e
x
x
D
e
x
2
x
;
u
0
D e
x
e
x
2
; u D c C
Z
x
1
e
t
e
t
2
dt; y D
e
x
x
c C
Z
x
1
e
t
e
t
2
dt
; y.1/ D 2 ) c D 2e;
y D
1
x
2e
.x1/
C e
x
Z
x
1
e
t
e
t
2
dt
.
2.1.44. (b) Eqn. (A) is equivalent to
y
0
2
x
D
1
x
.B/
on .1; 0/ and .0; 1/. Here
y
0
1
y
1
D
2
x
; ln jy
1
j D 2 ln jxj; y
1
D x
2
; y D ux
2
; u
0
x
2
D
1
x
;
u
0
D
1
x
3
; u D
1
2x
2
C c, so y D
1
2
C cx
2
is the general solution of (A) on .1; 0/ and .0; 1/.
(c) From the proof of (b), any so lution of (A) must be of the form
y D
8
ˆ
<
ˆ
:
1
2
C c
1
x
2
; x 0;
1
2
C c
2
x
2
; x < 0;
.C/
for x ¤ 0, and any function of the form (C) satisfies (A) for x ¤ 0. To complete the proof we must show
that any fu nction of the form (C) is differentiable and satisfies (A) at x D 0. By definition,
y
0
.0/ D lim
x!0
y.x/ y.0/
x 0
D lim
x!0
y.x/ 1=2
x
if the limit exists. Bu t
y.x/ 1=2
x
D
c
1
x; x > 0
c
2
x; x < 0;
so y
0
.0/ D 0. Si nce 0y
0
.0/ 2y.0/ D 0 0 2.1=2/ D 1, any function of the form (C) satisfies (A) at
x D 0.
(d) From (b) any solution y of (A) on .1; 1/ is of the form (C), so y.0/ D 1=2.
8 Chapter 2
First Order Equatio ns
(e) If x
0
> 0, then every function of the form ( C) with c
1
D
y
0
1=2
x
2
0
and c
2
arbitrary is a solution
of the initial value problem on .1; 1/. Since these functions are all i dentical on .0; 1/, this does not
contradict Theorem 2.1.1, which implies that (B) (so (A)) has exactly one solution o n .0; 1/ such that
y.x
0
/ D y
0
. A similar argument applies if x
0
< 0.
2.1.46. (a) Let y D c
1
y
1
C c
2
y
2
. Then
y
0
C p.x/y D .c
1
y
1
C c
2
y
2
/
0
Cp.x/.c
1
y
1
C c
2
y
2
/
D c
1
y
0
1
C c
2
y
0
2
C c
1
p.x/y
1
C c
2
p.x/y
2
D c
1
.y
0
1
C p.x/y
1
/ C c
2
.y
2
C p.x/y
2
/ D c
1
f
1
.x/ C c
2
f
2
.x/:
(b) Let f
1
D f
2
D f and c
1
D c
2
D 1.
(c) Let f
1
D f , f
2
D 0, and c
1
D c
2
D 1.
2.1.48. (a) If ´ D tan y, then ´
0
D .sec
2
y/y
0
, so ´
0
D 1; ´
1
D e
3x
; ´ D ue
3x
; u
0
e
3x
D 1;
u
0
D e
3x
; u D
e
3x
3
C c; ´ D
1
3
C ce
3x
D tan y; y D tan
1
1
3
C ce
3x
.
(b) If ´ D e
y
2
, then ´
0
D 2yy
0
e
y
2
, so ´
0
C
2
x
´ D
1
x
2
; ´
1
D
1
x
2
; ´ D
u
x
2
;
u
0
x
2
D
1
x
2
; u
0
D 1;
u D x C c; ´ D
1
x
C
c
x
2
D e
y
2
; y D ˙
ln
1
x
C
c
x
2

1=2
.
(c) Rewrite the equation as
y
0
y
C
2
x
ln y D 4x. If ´ D ln y, then ´
0
D
y
0
y
, so ´
0
C
2
x
´ D 4x; ´
1
D
1
x
2
;
´ D
u
x
2
;
u
0
x
2
D 4x; u
0
D 4x
3
; u D x
4
C c; ´ D x
2
C
c
x
2
D ln y; y D exp
x
2
C
c
x
2
.
(d) If ´ D
1
1 C y
, t hen ´
0
D
y
0
.1 C y/
2
, so ´
0
C
1
x
´ D
3
x
2
; ´
1
D
1
x
; ´ D
u
x
;
u
0
x
D
3
x
2
;
u
0
D
3
x
; u D 3 ln jxj c; ´ D
3 ln jxj C c
x
D
1
1 C y
; y D 1 C
x
3 ln jxj C c
.
2.2 SEPARABLE EQUATIONS
2.2.2. By inspection, y k (k D integer ) is a con stant solution. Separate variables to find others:
cos y
sin y
y
0
D sin x; ln .jsin yj/ D cos x C c.
2.2.4. y 0 is a constant solut ion. Separate variables to fin d others:
ln y
y
y
0
D x
2
;
.ln y/
2
2
D
x
3
3
C c.
2.2.6. y 1 and y 1 are constant solu tions. For others, separate variables: .y
2
1/
3=2
yy
0
D
1
x
2
;
.y
2
1/
1=2
D
1
x
c D
1 C cx
x
; .y
2
1/
1=2
D
x
1 C cx
; .y
2
1/ D
x
1 C cx
2
;
y
2
D 1 C
x
1 C cx
2
; y D ˙
1 C
x
1 Ccx
2
!
1=2
.
Section 2.2
Separable Equations
9
2.2.8. By inspection, y 0 is a con stant solution. Separate variables to find others:
y
0
y
D
x
1 C x
2
;
ln jyj D
1
2
ln.1 C x
2
/ C k; y D
c
p
1 C x
2
, which includes the constant solution y 0.
2.2.10. .y1/
2
y
0
D 2xC3;
.y 1/
3
3
D x
2
C3xCc; .y1/
3
D 3x
2
C9xCc; y D 1 C
3x
2
C 9x C c/
1=3
.
2.2.12.
y
0
y.y C 1/
D x;
1
y
1
y C 1
y
0
D x; ln
ˇ
ˇ
ˇ
ˇ
y
y C 1
ˇ
ˇ
ˇ
ˇ
D
x
2
2
C k;
y
y C 1
D ce
x
2
=2
; y.2/ D
1 ) c D
e
2
2
; y D .y C 1/ce
x
2
=2
; y.1 ce
x
2
=2
/ D ce
x
2
=2
; y D
ce
x
2
=2
1 ce
x
2
=2
; setting c D
e
2
2
yields y D
e
.x
2
4/=2
2 e
.x
2
4/=2
.
2.2.14.
y
0
.y C 1/.y 1/.y 2/
D
1
x C 1
;
1
6
1
y C 1
1
2
1
y 1
C
1
3
1
y 2
y
0
D
1
x C 1
;
1
y C 1
3
y 1
C
2
y 2
y
0
D
6
x C 1
; ln j y C 1j 3 ln jy 1j C 2 ln jy 2j D 6 ln jx C 1j C k;
.y C 1/.y 2/
2
.y 1/
3
D
c
.x C 1/
6
;
y.1/ D 0 ) c D 256;
.y C 1/.y 2/
2
.y 1/
3
D
256
.x C 1/
6
.
2.2.16.
y
0
y.1 C y
2
/
D 2x;
1
y
y
y
2
C 1
y
0
D 2x; ln
jyj
p
y
2
C 1
!
D x
2
C k;
y
p
y
2
C1
D ce
x
2
;
y.0/ D 1 ) c D
1
p
2
;
y
p
y
2
C 1
D
e
x
2
p
2
; 2y
2
D .y
2
C1/e
x
2
; y
2
.2e
x
2
/ D e
2x
2
; y D
1
p
2e
2x
2
1
.
2.2.18.
y
0
.y 1/.y 2/
D 2x;
1
y 2
1
y 1
y
0
D 2x; ln
ˇ
ˇ
ˇ
ˇ
y 2
y 1
ˇ
ˇ
ˇ
ˇ
D x
2
C k;
y 2
y 1
D ce
x
2
;
y.0/ D 3 ) c D
1
2
;
y 2
y 1
D
e
x
2
2
; y2 D
e
x
2
2
.y1/; y
1
e
x
2
2
!
D 2
e
x
2
2
; y D
4 e
x
2
2 e
x
2
.
The in terval of validity is .1; 1/.
2.2.20.
y
0
y.y 2/
D 1;
1
2
1
y 2
1
y
y
0
D 1;
1
y 2
1
y
y
0
D 2; ln
ˇ
ˇ
ˇ
ˇ
y 2
y
ˇ
ˇ
ˇ
ˇ
D 2x C k;
y 2
y
D ce
2x
; y.0/ D 1 ) c D 1;
y 2
y
D e
2x
; y 2 D ye
2x
; y.1 C e
2x
/ D 2;
y D
2
1 C e
2x
. The interval o f validity is .1; 1/.
2.2.22. y 2 is a constant solution of the differential equation, and it satisfies the initial condition.
Therefore, y 2 is a solution of the initial value problem. The interval of validity is .1; 1/.
2.2.24.
y
0
1 C y
2
D
1
1 C x
2
; tan
1
y D tan
1
x C k; y D tan.tan
1
x C k/. Now use the ident ity
tan.A C B/ D
tan A C tan B
1 t an A tan B
with A D tan
1
x and B D tan
1
c to rewrite y as y D
x C c
1 cx
, where
c D tan k.
10 Chapter 2
First Order Equations
2.2.26. .sin y/y
0
D cos x; cos y D sin x C c; y./ D
2
) c D 0, so (A) cos y D sin x. To obtain
y explicity we note that sin x D cos.x C=2/, so (A) can be rewritten as cos y D cos.x C=2/. Thi s
equation holds if an only if one of the following condi tions holds for some integer k:
(B) y D x C
2
C 2k Imbox.C / y D x
2
C 2k:
Among these choices the only way to satisfy the initial condition is to let k D 1 in (C), so y D x C
3
2
:
2.2.28. Rewrite the equation as P
0
D a˛P .P 1=˛/. By inspection, P 0 and P 1=˛ are
constant solution s. Separate variables to find others:
P
0
P.P 1/
D a˛;
1
P 1
1
P
P
0
D a;
ln
ˇ
ˇ
ˇ
ˇ
P 1
P
ˇ
ˇ
ˇ
ˇ
D at C k; (A)
P 1=˛
P
D ce
˛t
; P .1 ce
˛t
/ D 1=˛; (B) P D
1
˛.1 ce
˛t
/
.
From (A), P.0/ D P
0
) c D
P
0
1=˛
P
0
. Substituting this into (B) yields P D
P
0
˛P
0
C .1 ˛P
0
/e
at
.
From this lim
t!1
P.t/ D 1=˛.
2.2.30. If q D rS the equation for I reduces to I
0
D rI
2
, so
I
0
I
2
D r ;
1
I
D r t
1
I
0
; so
I D
I
0
1 C rI
0
t
and lim
t!1
I.t/ D 0. If q ¤ rS, then rew rite the equation for I as I
0
D rI.I ˛/
with ˛ D S
q
r
. Separating variables yields
I
0
I.I ˛/
D r ;
1
I ˛
1
I
I
0
D r ˛; ln
ˇ
ˇ
ˇ
ˇ
I ˛
I
ˇ
ˇ
ˇ
ˇ
D
r˛t C k; (A)
I ˛
I
D ce
r˛t
; I.1 ce
r˛t
/ D ˛; (B) I D
˛
1 ce
r˛t
. From (A), I.0/ D I
0
)
c D
I
0
˛
I
0
. Substituting thi s into (B) yields I D
˛I
0
I
0
C I
0
/e
r˛t
. If q < rS, then ˛ > 0 and
lim
t!1
I.t/ D ˛ D S
q
r
. If q > rS, then ˛ < 0 and lim
t!1
I.t/ D 0.
2.2.34. The given equation is separable if f D ap, where a is a constant. In this case the equation is
y
0
C p.x/y D ap.x/: .A/
Let P be an antiderivative o f p; that is, P
0
D p.
SOLUTION BY SEPARATION OF VARIABL ES. y
0
D p.x/.y a/;
y
0
y a
D p.x/; ln jy aj D
P.x/ C k; y a D ce
P.x/
; y D a C ce
P.x/
.
SOLUTION BY VARIATION OF PARAMETERS. y
1
D e
P.x/
is a solution of the complementary
equation, so solutions of (A) are of t he form y D ue
P.x/
where u
0
e
P.x/
D ap.x/. Hence, u
0
D
ap.x/e
P.x/
; u D ae
P.x/
C c; y D a C ce
P.x/
.
2.2.36. R ewrite the given equation as (A) y
0
2
x
y D
x
5
y C x
2
. y
1
D x
2
is a solution of y
0
2
x
y D 0.
Look for so lutions of (A) of the form y D ux
2
. Then u
0
x
2
D
x
5
.u C 1/x
2
D
x
3
u C 1
; u
0
D
x
u C 1
;
.u C 1/u
0
D x;
.1 C u/
2
2
D
x
2
2
C
c
2
; u D 1 ˙
p
x
2
C c; y D x
2
1 ˙
p
x
2
C c
.
Section 2.3
Existence and Uniqueness of Solutions of Nonlinear Equation s
11
2.2.38. y
1
D e
2x
is a solution of y
0
2y D 0. Look for solutions of the nonlinear equation of t he
form y D ue
2x
. Then u
0
e
2x
D
xe
2x
1 u
; u
0
D
x
1 u
; .1 u/u
0
D x;
.1 u/
2
2
D
1
2
.x
2
c/;
u D 1 ˙
p
c x
2
; y D e
2x
1 ˙
p
c x
2
.
2.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR EQUATIONS
2.3.2. f .x; y/ D
e
x
Cy
x
2
C y
2
and f
y
.x; y/ D
1
x
2
C y
2
2y.e
x
C y/
.x
2
C y
2
/
2
are both continuous at all .x; y/ ¤
.0; 0/. Hence, Theorem 2.3.1 implies that if .x
0
; y
0
/ ¤ .0; 0/, then the initial value problem h as a a
unique solution on some open interval containing x
0
. Theorem 2.3.1 does no t apply if .x
0
; y
0
/ D .0; 0/.
2.3.4. f .x; y/ D
x
2
Cy
2
ln xy
and f
y
.x; y/ D
2y
ln xy
x
2
C y
2
x.ln xy/
2
are bo th continuous at all .x; y/ such
that xy > 0 and xy ¤ 1. Hence, Theorem 2.3.1 implies that if x
0
y
0
> 0 and x
0
y
0
¤ 1, then the initial
value problem has unique solution on an open interval containing x
0
. Theorem 2.3.1 does not appl y if
x
0
y
0
0 or x
0
y
0
D 1.
2.3.6. f .x; y/ D 2xy and f
y
.x; y/ D 2x are both continuous at all .x; y/. Hence, Theorem 2.3.1
implies that if .x
0
; y
0
/ is arbitrary, then t he initial value problem has a unique solution on some open
inter val contai ning x
0
.
2.3.8. f .x; y/ D
2x C 3y
x 4y
and f
y
.x; y/ D
3
x 4y
C 4
2x C 3y
.x 4y/
2
are both continuous at all .x; y/ such
that x ¤ 4y. Hence, Theorem 2.3.1 impli es that if x
0
¤ 4y
0
, then the ini tial value problem has a unique
solution on some open interval containing x
0
. Theorem 2.3.1 does not apply if x
0
D 4y
0
.
2.3.10. f .x; y/ D x.y
2
1/
2=3
is continuous at all .x; y/, but f
y
.x; y/ D
4
3
xy.y
2
1/
1=3
is continuous
at .x; y/ if and only if y ¤ ˙1. Hence, Theorem 2.3.1 implies that if y
0
¤ ˙1, t hen the initial value
problem has a unique solution on some o pen interval containing x
0
, while if y
0
D ˙1, then the initial
value prob lem has at least one so lution (possibly not unique on any open inter val containing x
0
).
2.3.12. f .x; y/ D .x C y/
1=2
and f
y
.x; y/ D
1
2.x C y/
1=2
are b oth continuous at all .x; y/ such th at
x Cy > 0 Hence, Theorem 2.3.1 implies that if x
0
Cy
0
> 0, then the initial value problem has a uniq ue
solution on some open interval containing x
0
. Theorem 2.3.1 does not apply if x
0
C y
0
0.
2.3.14. To apply Theorem 2.3.1, rewrite the given initial value problem as (A) y
0
D f .x; y/; y.x
0
/ D y
0
,
where f .x; y/ D p.x/y C q.x/ and f
y
.x; y/ D p.x/. If p and f are continuous on some open
inter val .a; b/ containing x
0
, then f and f
y
are continuous on some open rectangle containing .x
0
; y
0
/,
so Theorem 2.3.1 implies that (A) has a un ique sol ution on so m e open i nterval containing x
0
. The
conclusion of Theorem 2.1.2 i s more specific: the solut ion of (A ) exists and is unique on .a; b/. For
example, in the extreme case where .a; b/ D .1; 1/, Theorem 2.3.1 stil l implies only existence and
uniqueness on some open interval contain ing x
0
, while Theorem 2.1.2 implies that the solu tion exists and
is unique on .1; 1/.
2.3.16. First find solutions of (A) y
0
D y
2=5
. Obviously y 0 is a so lution. If y 6 0, then we
can separate variables on any open interval wh ere y has no zeros: y
2=5
y
0
D 1;
5
3
y
3=5
D x C c;
y D
3
5
.x C c/
5=3
. (Note that this solution is also defined at x D c, even though y.c/ D 0.
12 Chapter 2
First Order Equations
To satisfy the initial condition, let c D 1. Thus, y D
3
5
.x C 1/
5=3
is a solution of the initial value
problem on .1; 1/; moreover, since f .x; y/ D y
2=5
and f
y
.x; y/ D
2
5
y
3=5
are both continuous at
all .x; y/ such that y ¤ 0, this is the only solution on .5=3; 1/, by an argument similar to that given in
Example 2.3.7, the function
y D
(
0; 1 < x
5
3
3
5
x C 1
5=3
;
5
3
< x < 1
(To see that y satisfies y
0
D y
2=5
at x D
5
3
use an argument similar to that of Discussion 2 .3.15-2) For
every a
5
3
, the following function is also a solution :
y D
8
ˆ
ˆ
<
ˆ
ˆ
:
3
5
.x C a/
5=3
; 1 < x < a;
0; a x
5
3
3
5
x C 1
5=3
;
5
3
< x < 1:
2.3.18. Obviously, y
1
1 is a solution. From Discussion 2.3.18 (taking c D 0 in the two famili es of
solutions) yields y
2
D 1 C jxj
3
and y
3
D 1 jxj
3
. Other solutions are y
4
D 1 C x
3
, y
5
D 1 x
3
,
y
6
D
1 C x
3
; x 0;
1; x < 0
I y
7
D
1 x
3
; x 0;
1; x < 0
I
y
8
D
1; x 0;
1 Cx
3
; x < 0
I y
9
D
1; x 0;
1 x
3
; x < 0
It is straightforward to verify that all these functions satisfy y
0
D 3x.y1/
1=3
for all x ¤ 0. Moreover,
y
0
i
.0/ D lim
x!0
y
i
.x/ 1
x
D 0 for 1 i 9, which implies that they also satisfy t he equation at x D 0.
2.3.20. Let y be any sol ution of (A) y
0
D 3x.y 1/
1=3
; y.3/ D 7. By continuity, there is some open
inter val I containing x
0
D 3 on which y.x/ < 1. From Discussion 2.3.18, y D 1 C .x
2
C c/
3=2
on I ;
y.3/ D 7 ) c D 5; (B) y D 1 .x
2
5/
3=2
. It now follows that every solution of (A) sati sfies
y.x/ < 1 and is given by (B) on .
p
5; 1/; that is, (B) is the unique solution of (A) on .
p
5; 1/. This
solution can be extended uniquely to .0; 1/ as
y D
1; 0 < x
p
5;
1 .x
2
5/
3=2
;
p
5 < x < 1
It can be extended to .1; 1/ in infinitely many ways. Thus,
y D
1; 1 < x
p
5;
1 .x
2
5/
3=2
;
p
5 < x < 1
is a solution of the initial value problem on .1; 1/. Mor oever, if ˛ 0, then
y D
8
<
:
1 C .x
2
˛
2
/
3=2
; 1 < x < ˛;
1; ˛ x
p
5;
1 .x
2
5/
3=2
;
p
5 < x < 1;
Section 2.4
Transfo rmation of Non linear Equations into Separable Equation s
13
and
y D
8
<
:
1 .x
2
˛
2
/
3=2
; 1 < x < ˛;
1; ˛ x
p
5;
1 .x
2
5/
3=2
;
p
5 < x < 1;
are also solutions of the initial value problem on .1; 1/.
2.4 TRANSFORMATION OF NONL INEAR EQUATIONS INTO SEPARABLE EQUATIONS
2.4.2. Rewrite as y
0
2
7x
y D
x
7y
6
. Then
y
0
1
y
1
D
2
7x
; ln jy
1
j D
2
7
ln jxj D ln jxj
2=7
; y
1
D x
2=7
;
y D ux
2=7
; u
0
x
2=7
D
1
7u
6
x
5=7
; u
6
u
0
D
1
7x
;
u
7
7
D
1
7
ln jxj C
c
7
; u D .c l n jxj /
1=7
;
y D x
2=7
.c ln jxj/
1=7
.
2.4.4. Rewrite as y
0
C
2x
1 C x
2
y D
1
.1 C x
2
/
2
y
. Then
y
0
1
y
1
D
2x
1 C x
2
; ln jy
1
j D ln.1 C x
2
/;
y
1
D
1
1 C x
2
; y D
u
1 C x
2
;
u
0
1 C x
2
D
1
u.1 C x
2
/
; u
0
u D 1;
u
2
2
D x C
c
2
; u D ˙
p
2x C c;
y D ˙
p
2x C c
1 C x
2
.
2.4.6.
y
0
1
y
1
D
1
3
1
x
C 1
; ln jy
1
j D
1
3
.ln jxj C x/; y
1
D x
1=3
e
x=3
; y D ux
1=3
e
x=3
; u
0
x
1=3
e
x=3
D
x
4=3
e
4x=3
u
4
;
u
0
u
4
D xe
x
;
1
3u
3
D .x1/e
x
c
3
; u D
1
Œ3.1 x/e
x
C c
1=3
; y D
x
3.1 x/ C ce
x
1=3
.
2.4.8.
y
0
1
y
1
D x; ln jy
1
j D
x
2
2
; y
1
D e
x
2
=2
; y D ue
x
2
=2
; u
0
e
x
2
=2
D xu
3=2
e
3x
2
=4
;
u
0
u
3=2
D xe
x
2
=4
;
(A)
2
u
1=2
D 2e
x
2
=4
C 2c; u
1=2
D
1
c C e
x
2
=4
; u
D
1
.c C e
x
2
=4
/
2
; y D
1
.1 C ce
x
2
=4
/
2
. Because
of (A) we must choose c so that y.1/ D 4 and 1 C ce
1=4
< 0. This implies that c D 3e
1=4
;
y D
1
3
2
e
.x
2
1/=4
2
.
2.4.10.
y
0
1
y
1
D 2; ln jy
1
j D 2x; y
1
D e
2x
; y D ue
2x
; u
0
e
2x
D 2u
1=2
e
x
; u
1=2
u
0
D 2e
x
;
2u
1=2
D 2e
x
C 2c; u
1=2
D c e
x
> 0; y.0/ D 1 ) u.0/ D 1 ) c D 2; u D .2 e
x
/
2
;
y D .2e
x
1/
2
.
2.4.12. Rewrite as y
0
C
2
x
y D
y
3
x
2
. Then
y
0
1
y
1
D
2
x
; ln jy
1
j D 2 ln jxj D l n x
2
; y
1
D
1
x
2
;
y D
u
x
2
;
u
0
x
2
D
u
3
x
8
;
u
0
u
3
D
1
x
6
;
1
2u
2
D
1
5x
5
C c; y.1/ D
1
p
2
) u.1/ D
1
p
2
) c D
4
5
;
u D
5x
5
2.1 C 4x
5
/
1=2
; y D
5x
2.1 C4x
5
/
1=2
.
2.4.14. P D ue
at
; u
0
e
at
D a˛u
2
e
2at
;
u
0
u
2
D a˛e
at
;
1
u
D a
Z
t
0
˛./e
a
d
1
P
0
; P D
P
0
e
at
1 C aP
0
R
t
0
˛./e
a
d
, which can also be written as P D
P
0
e
at
C aP
0
e
at
R
t
0
˛./e
a
d
. Therefore,
14 Chapter 2
First Order Equations
lim
t!1
P.t/ D
8
<
:
1 if L D 0;
0 if L D 1;
1=aL if 0 < L < 1:
2.4.16. y D ux; u
0
x C u D u
2
C 2u; (A) u
0
x D u.u C 1/. Since u 0 and u 1 are constant
solutions of (A), y 0 and y D x are solutions of the given equat ion. The nonconstant solutions
of (A) sati sf y D
u
0
u.u C1/
D
1
x
;
1
u
1
u C 1
u
0
D
1
x
; ln
ˇ
ˇ
ˇ
ˇ
u
u C 1
ˇ
ˇ
ˇ
ˇ
D ln jxj C k;
u
u C 1
D cx;
u D .u C 1/cx; u.1 cx/ D cx; u D
cx
1 cx
; y D
cx
2
1 cx
.
2.4.18. y D ux; u
0
x C u D u C sec; u
0
x D sec u; .cos u/u
0
D
1
x
; sin u D ln jxj C c; u D
sin
1
.ln jxj C c/; y D x sin
1
.ln jxj C c/.
2.4.20. R ewrite the given equation as y
0
D
x
2
C 2y
2
xy
; y D ux; u
0
x C u D
1
u
C 2u; u
0
x D
1 C u
2
u
;
uu
0
1 C u
2
D
1
x
;
1
2
ln.1Cu
2
/ D ln jxjCk; ln
1 C
y
2
x
2
D ln x
2
C2k; 1 C
y
2
x
2
D cx
2
; x
2
Cy
2
D cx
4
;
y D ˙x
p
cx
2
1.
2.4.22. y D ux; u
0
x C u D u C u
2
; u
0
x D u
2
;
u
0
u
2
D
1
x
;
1
u
D ln jxj C c; y.1/ D 2 ) u.1/ D
2 ) c D
1
2
; u D
2
2 ln j xj C 1
; y D
2x
2 ln jxj C 1
.
2.4.24. Rewrite the given equation as y
0
D
x
2
C y
2
xy
; y D ux; u
0
x Cu D
1
u
u; u
0
x D
1 C 2u
2
u
;
uu
0
1 C 2u
2
D
1
x
;
1
4
ln.1 C 2u
2
/ D ln jxj C k; x
4
.1 C 2u
2
/ D c; y.1/ D 2 ) u.1/ D 2 ) c D 9;
x
4
.1 C 2u
2
/ D 9; u
2
D
9 x
4
2x
4
; u D
1
x
2
9 x
4
2
1=2
; y D
1
x
9 x
4
2
1=2
.
2.4.26. Rewr ite the given equation as y
0
D 2 C
y
2
x
2
C 4
y
x
; y D ux; u
0
x C u D 2 C u
2
C 4u;
u
0
x D u
2
C3u C2 D .uC1/.uC2/;
u
0
.u C 1/.u C 2/
D
1
x
;
1
u C 1
1
u C 2
u
0
D
1
x
; ln
ˇ
ˇ
ˇ
ˇ
u C 1
u C 2
ˇ
ˇ
ˇ
ˇ
D
ln jxj C k;
u C 1
u C 2
D cx; y.1/ D 1 ) u.1/ D 1 ) c D
2
3
;
u C 1
u C 2
D
2
3
x; u C 1 D
2
3
x.u C 2/;
u
1
2
3
x
D 1 C
4
3
x; u D
4x 3
2x 3
; y D
x.4x 3/
2x 3
.
2.4.28. y D ux; u
0
xCu D
1 C u
1 u
; u
0
x D
1 C u
2
1 u
;
.1 u/u
0
1 C u
2
D
1
x
; tan
1
u
1
2
ln.1Cu
2
/ D ln jxjCc;
tan
1
y
x
1
2
ln
1 C
y
2
x
2
D ln jxj C c; tan
1
y
x
1
2
ln.x
2
C y
2
/ D c.
2.4.30. y D ux; u
0
x C u D
u
3
C 2u
2
C u C 1
.u C 1/
2
D
u.u C 1/
2
C 1
.u C 1/
2
D u C
1
.u C 1/
2
; u
0
x D
1
.u C 1/
2
;
.u C 1/
2
u
0
D
1
x
;
.u C 1/
3
3
D ln jxj C c; .u C 1/
3
D 3.ln jxj C c/;
y
x
C 1
3
D 3.ln jxj C c/;
.y C x/
3
D 3x
3
.ln jxj C c/.
Section 2.4
Transfo rmation of Non linear Equations into Separable Equation s
15
2.4.32. y D ux; u
0
x Cu D
u
u 2
; ( A) u
0
x D
u.u 3/
2 u
; Since u 0 and u 3 are constant solutions
of (A), y 0 and y D 3x are solutions o f the given equation. The nonconstant solutions of (A) satisfy
.2 u/u
0
u.u 3/
D
1
x
;
1
u 3
C
2
u
u
0
D
3
x
; ln ju 3j C 2 ln juj D 3 ln jxj C k; u
2
.u 3/ D
c
x
3
;
y
2
.y 3x/ D c.
2.4.34. y D ux; u
0
x C u D
1 C u C 3u
3
1 C 3u
2
D u C
1
1 C 3u
2
; .1 C 3u
2
/u
0
D
1
x
; u C u
3
D ln jxj C c;
y
x
C
y
3
x
3
D ln jxjC c.
2.4.36. Rewrite the given equation as y
0
D
x
2
xy C y
2
xy
; y D ux; u
0
xCu D
1
u
1Cu; u
0
x D
1 u
u
;
uu
0
u 1
D
1
x
;
1 C
1
u 1
u
0
D
1
x
; uCln ju1j D ln jxjCk; e
u
.u1/ D
c
x
; e
y=x
.y x/ D c.
2.4.38. y D ux; u
0
x Cu D 1 C
1
u
Cu; (A) u
0
x D
u C 1
u
. Since (A ) has the constant solution u D 1;
y D x is a solution of the given equation. The no nconstant solutions of (A) satisfy
uu
0
u C 1
D
1
x
;
1
1
u C 1
u
0
D
1
x
; u ln ju C1j D ln jxjCc;
y
x
ln
ˇ
ˇ
ˇ
y
x
1
ˇ
ˇ
ˇ
D ln jxjCc; y x ln jy xj D cy.
2.4.40. If x D X X
0
and y D Y Y
0
, then
dy
dx
D
d Y
dx
D
d Y
dX
dX
dx
D
d Y
dX
, so y D y.x/ satisfies the
given equation if and on ly if Y D Y .X/ satisfies
d Y
dX
D
a.X X
0
/ C b.Y Y
0
/ C ˛
c.X X
0
/ C d.Y Y
0
/ C ˇ
;
which reduces t o the nonlinear homogeneous equat ion
d Y
dX
D
aX C bY
cX C d Y
if and only if
aX
0
C bY
0
D ˛
cX
0
C d Y
0
D ˇ:
.B/
We will now show that if ad bc ¤ 0, then it is possible (for any choice of ˛ and ˇ) to solve (B).
Multiplying the first equation i n (B) by d and the second by b yields
daX
0
C dbY
0
D d˛
bcX
0
C bd Y
0
D bˇ:
Subtr acti ng the second of these equations from the first yields .ad bc/X
0
D ˛d ˇb. Since ad bc ¤
0, this implies that X
0
D
˛d ˇb
ad bc
. Multiplying the first equation in (B) by c and t he second by a yields
caX
0
C cbY
0
D c˛
acX
0
C adY
0
D aˇ:
16 Chapter 2
First Order Equations
Subtr acti ng the first of t hese equation from the second yields .ad bc/Y
0
D ˛c ˇa. Since ad bc ¤ 0
this impl ies that Y
0
D
˛c ˇa
ad bc
.
2.4.42. For th e given equation, (B) of Exer ci se 2.4.40 is
2X
0
C Y
0
D 1
X
0
C 2Y
0
D 4:
Solving this pair of equati ons yields X
0
D 2 and Y
0
D 3. The transformed differential equation is
d Y
dX
D
2X C Y
X C 2Y
: .A/
Let Y D uX; u
0
X C U D
2 Cu
1 C 2u
; (B) u
0
X D
2.u 1/.u C 1/
2u C1
. Since u 1 and u 1
satisfy ( B), Y D X and Y D X are solutions of (A). Since X D x C 2 and Y D y 3, it follows
that y D x C 5 and y D x C 1 are solutions of the given equation. The nonconstant solutions
of (B) satisfy
.2u C1/u
0
.u 1/.u C 1/
D
2
X
;
1
u C 1
C
3
u 1
u
0
D
4
X
; ln ju C 1j C 3 ln ju 1j D
4 ln jXj C k; .u C 1/.u 1/
3
D
c
X
4
; .Y C X/.Y X/
3
D c; Setting X D x C 2 and Y D y 3
yields .y C x 1/.y x 5/
3
D c.
2.4.44. Rewrite the given equation as y
0
D
y
3
Cx
3xy
2
; y D ux
1=3
; u
0
x
1=3
C
1
3x
2=3
u D
u
3
C 1
3u
2
x
2=3
;
u
0
x
1=3
D
1
3x
2=3
u
2
; u
2
u
0
D
1
3x
;
u
3
3
D
1
3
.ln jxj Cc/; u D .ln jxj C c/
1=3
; y D x
1=3
.ln jxj C c/
1=3
.
2.4.46. Rewrite the given equation as y
0
D
2.y
2
C x
2
y x
4
/
x
3
; y D ux
2
; u
0
x
2
C 2xu D 2x.u
2
C
u 1/; (A) u
0
x
2
D 2x.u
2
1/. Since u 1 and u 1 are constant solutions of (A ), y D x
2
and y D x
2
are solutions of the given equation. The nonconstant solutions of (A) satisfy
u
0
u
2
1
D
2
x
;
1
u 1
1
u C 1
u
0
D
4
x
; ln
ˇ
ˇ
ˇ
ˇ
u 1
u C 1
ˇ
ˇ
ˇ
ˇ
D 4 ln jxj C k;
u 1
u C 1
D cx
4
; .u 1/ D .u C 1/cx
4
;
u.1 cx
4
/ D 1 C cx
4
; u D
1 C cx
4
1 cx
4
; y D
x
2
.1 C cx
4
/
1 cx
4
.
2.4.48. y D u tan x; u
0
tan x C u sec
2
x D .u
2
Cu C 1/ sec
2
x; u
0
tan x D .u
2
C1/ sec
2
x;
u
0
u
2
C 1
D
sec
2
x cot x D cot x Ctan x; tan
1
u D ln jsin xjln jcos xjCc D ln jtan xjCc; u D tan.ln jtan xjC
c/; y D tan x tan.ln jtan xj C c/.
2.4.50. Rewrite the given equati on as y
0
D
.y C
p
x/
2
2x.y C 2
p
x/
; y D ux
1=2
; u
0
x
1=2
C
1
2
p
x
u D
.u C 1/
2
2
p
x .u C 2/
;
u
0
x
1=2
D
1
2
p
x .u C 2/
; .u C 2/u
0
D
1
2x
;
.u C 2/
2
2
D
1
2
.ln jxj C c/; .u C 2/
2
D ln jxj C c;
u D 2 ˙
p
ln jxj C c; y D x
1=2
.2 ˙
p
ln jxj C c/.
2.4.52. y
1
D
1
x
2
is a solution of y
0
C
2
x
y D 0. Let y D
u
x
2
; th en
u
0
x
2
D
3x
2
.u
2
=x
4
/ C 6x.u=x
2
/ C 2
x
2
.2x.u=x
2
/ C 3/
D
3.u=x/
2
C 6.u=x/ C 2
x
2
.2.u=x/ C 3/
;
Section 2.5
Exact Equations
17
so (A) u
0
D
3.u=x/
2
C 6.u=x/ C 2
2.u=x/ C 3
. Since (A) is a ho mogeneous nonlinear equation, we now substitute
u D vx into (A). This yields v
0
x Cv D
3v
2
C 6v C 2
2v C 3
; v
0
x D
.v C 1/.v C 2/
2v C3
;
.2v C 3/v
0
.v C 1/.v C 2/
D
1
x
;
1
v C 1
C
1
v C 2
v
0
D
1
x
; ln j.v C 1/.v C 2/j D ln jxj C k; (B) .v C 1/.v C 2/ D cx. Since
y.2/ D 2 ) u.2/ D 8 ) v.2/ D 4, (B) implies that c D 15. .v C 1/.v C 2/ D 15x; v
2
C 3v C
2 15x D 0. From the quadratic formula, v D
3 C
p
1 C 60x
2
; u D vx D
x.3 C
p
1 C 60x/
2
;
y D
u
x
2
D
3 C
p
1 C 60x
2x
.
2.4.54. Differentiating (A) y
1
.x/ D
y.ax/
a
yields (B) y
0
1
.x/ D
1
a
y
0
.ax/ a D y
0
.ax/. Since y
0
.x/ D
q.y.x/=x/ on some interval I , (C) y
0
.ax/ D q.y.ax/=ax/ on some interval J . Substituting (A) and (B)
into (C) yields y
0
1
.x/ D q.y
1
.x/=x/ on J .
2.4.56. If y D ´ C 1, th en ´
0
C ´ D x´
2
; ´ D ue
x
; u
0
e
x
D xu
2
e
2x
;
u
0
u
2
D xe
x
;
1
u
D
e
x
.x C 1/ c; u D
1
e
x
.x C1/ C c
; ´ D
1
x C 1 C ce
x
; y D 1 C
1
x C 1 C ce
x
.
2.4.58. If y D ´ C 1, th en ´
0
C
2
x
´ D ´
2
; ´
1
D
1
x
2
; ´ D
u
x
2
;
u
0
x
2
D
u
2
x
4
;
u
0
u
2
D
1
x
2
;
1
u
D
1
x
C c D
1 cx
x
; u D
x
1 cx
; ´ D
1
x.1 cx/
; y D 1
1
x.1 cx/
.
2.5 EXACT EQUATIONS
2.5.2. M.x; y/ D 3y cos x C 4xe
x
C 2x
2
e
x
; N.x; y/ D 3 sin x C 3; M
y
.x; y/ D 3 cos x D N
x
.x; y/,
so t he equation is exact. We must find F such that (A) F
x
.x; y/ D 3y cos x C 4xe
x
C 2x
2
e
x
and (B )
F
y
.x; y/ D 3 sin x C 3. Integrating (B) with respect to y yields (C) F .x; y/ D 3y sin x C 3y C .x/.
Differentiatin g (C) with respect to x yields (D) F
x
.x; y/ D 3y cos x C
0
.x/. Comparing (D) with
(A) shows that (E)
0
.x/ D 4xe
x
C 2x
2
e
x
. Integration by parts yields
Z
xe
x
dx D xe
x
e
x
and
Z
x
2
e
x
dx D x
2
e
x
2xe
x
C2e
x
. Substi tuting from the last two equations into (E) yields .x/ D 2x
2
e
x
.
Substituting this into (C) yi el ds F .x; y/ D 3y sin x C3y C2x
2
e
x
. Therefore, 3y sin x C3y C2x
2
e
x
D c.
2.5.4. M.x; y/ D 2x 2y
2
; N.x; y/ D 12y
2
4xy; M
y
.x; y/ D 4y D N
x
.x; y/, so the equation
is exact. We must find F such that (A) F
x
.x; y/ D 2x 2y
2
and (B) F
y
.x; y/ D 12y
2
4xy.
Integrating (A ) wit h respect to x yields (C) F .x; y/ D x
2
2xy
2
C .y/. Differentiating (C) wi th
respect to y yields (D) F
y
.x; y/ D 4xy C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D 12y
2
,
so we t ake .y/ D 4y
3
. Substituting this into (C) yields F .x; y/ D x
2
2xy
2
C 4y
3
. Therefore,
x
2
2xy
2
C4y
3
D c.
2.5.6. M.x; y/ D 4x C 7y; N.x; y/ D 3x C 4y; M
y
.x; y/ D 7 ¤ 3 D N
x
.x; y/, so the equation i s
not exact.
2.5.8. M.x; y/ D 2x C y; N.x; y/ D 2y C 2x; M
y
.x; y/ D 1 ¤ 2 D N
x
.x; y/, so the equation is not
exact.
18 Chapter 2
First Order Equations
2.5.10. M.x; y/ D 2x
2
C 8xy C y
2
; N.x; y/ D 2x
2
C
xy
3
3
; M
y
.x; y/ D 8x C 2y ¤ 4x C
y
3
3
D
N
x
.x; y/, so the equation is not exact.
2.5.12. M.x; y/ D y sin xyCxy
2
cos xy; N.x; y/ D x sin xyCxy
2
cos xy; M
y
.x; y/ D 3xy cos xyC
.1 x
2
y
2
/ sin xy ¤ .xy C y
2
/ cos xy C .1 xy
3
/ sin xy D N
x
.x; y/, so the equation is not exact.
2.5.14. M.x; y/ D e
x
.x
2
y
2
C 2xy
2
/ C 6x; N.x; y/ D 2x
2
ye
x
C 2; M
y
.x; y/ D 2xye
x
.x C 2/ D
N
x
.x; y/, so the equation is exact. We must find F such that (A) F
x
.x; y/ D e
x
.x
2
y
2
C2xy
2
/C6x and
(B) F
y
.x; y/ D 2x
2
ye
x
C2. In tegrating (B) with respect to y yields (C) F .x; y/ D x
2
y
2
e
x
C2yC .x/.
Differentiatin g (C) with respect to x yields (D) F
x
.x; y/ D e
x
.x
2
y
2
C 2xy
2
/ C
0
.x/. Comparing (D)
with (A) shows that
0
.x/ D 6x, so we take .x/ D 3x
2
. Substituting thi s in to (C) yields F .x; y/ D
x
2
y
2
e
x
C 2y C 3x
2
. Therefore, x
2
y
2
e
x
C 2y C 3x
2
D c.
2.5.16. M.x; y/ D e
xy
.x
4
y C4x
3
/ C3y; N.x; y/ D x
5
e
xy
C3x; M
y
.x; y/ D x
4
e
xy
.xy C5/ C3 D
N
x
.x; y/, so th e equati on is exact. We must find F such that (A) F
x
.x; y/ D e
xy
.x
4
y C 4x
3
/ C3y and
(B) F
y
.x; y/ D x
5
e
xy
C3x. Integrating (B) with resp ect to y yields (C) F .x; y/ D x
4
e
xy
C3xy C .x/.
Differentiatin g (C) with resp ect to x yields (D) F
x
.x; y/ D e
xy
.x
4
y C 4x
3
/ C 3y C
0
.x/. Comparing
(D) with (A) shows that
0
.x/ D 0, so we take .x/ D 0. Substituting this into (C) yields F .x; y/ D
x
4
e
xy
C 3xy. Therefore, x
4
e
xy
C 3xy D c.
2.5.18. M.x; y/ D 4x
3
y
2
6x
2
y 2x 3; N.x; y/ D 2x
4
y 2x
3
; M
y
.x; y/ D 8x
3
y 6x
2
D
N
x
.x; y/, so the equation i s exact. We must find F such th at (A) F
x
.x; y/ D 4x
3
y
2
6x
2
y 2x 3
and (B) F
y
.x; y/ D 2x
4
y 2x
3
. Integrating (A) with respect to x yi elds (C) F.x; y/ D x
4
y
2
2x
3
y
x
2
3x C .y/. Differentiating (C) with respect to y yields (D) F
y
.x; y/ D 2x
4
y 2x
3
C
0
.y/.
Comparing (D) wit h (B) shows that
0
.y/ D 0, so we take .y/ D 0. Substituting this into (C) yields
F .x; y/ D x
4
y
2
2x
3
y x
2
3x. Therefore, x
4
y
2
2x
3
y x
2
3x D c. Since y.1/ D 3 ) c D 1,
x
4
y
2
2x
3
y x
2
3x C 1 D 0 is an impl icit solution of the initial value prob lem. Solving this for y
by means of the quadratic formula yields y D
x C
p
2x
2
C 3x 1
x
2
.
2.5.20. M.x; y/ D .y
3
1/e
x
; N.x; y/ D 3y
2
.e
x
C 1/; M
y
.x; y/ D 3y
2
e
x
D N
x
.x; y/, so the
equation is exact. We must find F such that (A) F
x
.x; y/ D .y
3
1/e
x
and (B) F
y
.x; y/ D 3y
2
.e
x
C1/.
Integrating (A) with respect to x yields (C) F .x; y/ D .y
3
1/e
x
C.y/. Differentiating (C) with respect
to y yields (D) F
y
.x; y/ D 3y
2
e
x
C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D 3y
2
, so we take
.y/ D y
3
. Substituting this into (C) yields F.x; y/ D .y
3
1/e
x
Cy
3
. Therefore, .y
3
1/e
x
Cy
3
D c.
Since y.0/ D 0 ) c D 1, .y
3
1/e
x
C y
3
D 1 is an implicit solution of the initial value problem.
Therefore, y
3
.e
x
C 1/ D e
x
1, so y D
e
x
1
e
x
C 1
1=3
.
2.5.22. M.x; y/ D .2x 1/.y 1/; N.x; y/ D .x C2/.x 3/; M
y
.x; y/ D 2x 1 D N
x
.x; y/, so the
equation is exact. We must find F such that (A) F
x
.x; y/ D .2x 1/.y 1/ and ( B) F
y
.x; y/ D .x C
2/.x 3/. Integrating (A) with respect to x yields (C) F.x; y/ D .x
2
x/.y 1/C.y/. D ifferentiating
(C) with respect to y yields (D) F
y
.x; y/ D x
2
x C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D 6, so we take .y/ D 6y. Substituting this into (C) yields F.x; y/ D .x
2
x/.y 1/ 6y.
Therefore, .x
2
x/.y 1/6y D c. Since y.1/ D 1 ) c D 6, .x
2
x/.y 1/6y D 6 is an implicit
solution of the initial value problem. Therefore, .x
2
x 6/y D x
2
x C 6, so y D
x
2
x C 6
.x 3/.x C 2/
.
2.5.24. M.x; y/ D e
x
.x
4
y
2
C4x
3
y
2
C1/; N.x; y/ D 2x
4
ye
x
C2y; M
y
.x; y/ D 2x
3
ye
x
.x C 4/ D
N
x
.x; y/, so the equation is exact. We must find F such that (A) F
x
.x; y/ D e
x
.x
4
y
2
C 4x
3
y
2
C 1/
Section 2.5
Exact Equations
19
and (B) F
y
.x; y/ D 2x
4
ye
x
C 2y. Integrating (B) with respect to y yields (C) F .x; y/ D x
4
y
2
e
x
C
y
2
C .x/. Differentiating (C) with respect to x yields (D) F
x
.x; y/ D e
x
y
2
.x
4
C 4x
3
/ C
0
.x/.
Comparing (D) with (A) shows that
0
.x/ D e
x
, so we take .x/ D e
x
. Substi tuting this into (C) y ields
F .x; y/ D .x
4
y
2
C 1/e
x
C y
2
. Therefore, .x
4
y
2
C 1/e
x
C y
2
D c.
2.5.28. M.x; y/ D x
2
C y
2
; N.x; y/ D 2xy; M
y
.x; y/ D 2y D N
x
.x; y/, so the equation is exact.
We must find F such that (A) F
x
.x; y/ D x
2
C y
2
and (B) F
y
.x; y/ D 2xy. Integrating (A) with
respect to x yields (C) F .x; y/ D
x
3
3
C xy
2
C .y/. Differentiating (C) with respect to y yields (D)
F
y
.x; y/ D 2xy C
0
.y/. Comparing (D) with (B ) shows that
0
.y/ D 0, so we take .y/ D 0.
Substituting this into (C) yields F .x; y/ D
x
3
3
C xy
2
. Therefore,
x
3
3
C xy
2
D c.
2.5.30. (a) Exactness requires th at N
x
.x; y/ D M
y
.x; y/ D
@
@y
.x
3
y
2
C2xy C3y
2
/ D 2x
3
y C2x C6y.
Hence, N.x; y/ D
x
4
y
4
C x
2
C 6xy C g.x/, where g is differentiable.
(b) Exactness requires that N
x
.x; y/ D M
y
.x; y/ D
@
@y
.ln xy C 2y sin x/ D
1
y
C 2 sin x. Hence,
N.x; y/ D
x
y
2 cos x C g.x/, where g is differentiable.
(c) Exactness requires that N
x
.x; y/ D M
y
.x; y/ D
@
@y
.x sin x C y sin y/ D y cos y C si n y. Hence,
N.x; y/ D x.y cos y C sin y/ C g.x/, wh ere g is differentiable.
2.5.32. The assumptions imply that
@M
1
@y
D
@N
1
@x
and
@M
2
@y
D
@N
2
@x
. Therefore,
@
@y
.M
1
C M
2
/ D
@M
1
@y
C
@M
2
@y
D
@N
1
@x
C
@N
2
@x
D
@
@x
.N
1
CN
2
/, which implies that .M
1
CM
2
/ dx C.N
1
CN
2
/ dy D 0
is exact on R.
2.5.34. Here M.x; y/ D Ax
2
CBxy CCy
2
and N.x; y/ D Dx
2
CExy CFy
2
. Since M
y
D Bx C2Cy
and N
x
D 2Dx C Ey, the equation is exact if and only if B D 2D and E D 2C .
2.5.36. Differentiating(A) F .x; y/ D
Z
y
y
0
N.x
0
; s/ dsC
Z
x
x
0
M.t; y/ dt with respect to x yields F
x
.x; y/ D
M.x; y/, since t he first integral in (A) is independent of x and M.t; y/ is a continuous function of t for
each fixed y. Differentiating (A) with respect to y and using the assumption that M
y
D N
x
yields
F
y
.x; y/ D N.x
0
; y/ C
Z
x
x
0
@M
@y
.t; y/ dt D N.x
0
; y/ C
Z
x
x
0
@N
@x
.t; y/ dt D N.x
0
; y/ C N.x; y/
N.x
0
; y/ D N.x; y/.
2.5.38. y
1
D
1
x
2
is a solution of y
0
C
2
x
y D 0. Let y D
u
x
2
; th en
u
0
x
2
D
2x.u=x
2
/
.x
2
C 2x
2
.u=x
2
/ C 1/
D
2xu
x
2
.x
2
C 2u C 1/
;
so u
0
D
2xu
x
2
C 2u C1
, which can be rewritten as (A) 2xu dx C .x
2
C 2u C 1/ du D 0. Since
@
@u
.2xu/ D
@
@x
.x
2
C2uC1/ D 2x, (A) is exact. To solve (A) we must find F such that (A) F
x
.x; u/ D
20 Chapter 2
First Order Equations
2xu and (B) F
u
.x; u/ D x
2
C2uC1. Integrating (A) with respect to x yields (C) F.x; u/ D x
2
uC.u/.
Differentiatin g (C) with respect to u yields (D) F
u
.x; u/ D x
2
C
0
.u/. Co mparing (D ) with (B) shows
that
0
.u/ D 2u C 1, so we take .u/ D u
2
C u. Substitut ing this into (C) yields F.x; u/ D x
2
u C
u
2
C u D u.x
2
C u C 1/. Therefore, u.x
2
C u C 1/ D c. Since y.1/ D 2 ) u.1/ D 2; c D 0.
Therefore, u.x
2
C u C 1/ D 0. Since u 0 does not satisfy u.1/ D 2, it follows that u D x
2
1
and y D 1
1
x
2
.
2.5.40. y
1
D e
x
2
is a solution of y
0
C2xy D 0. Let y D ue
x
2
; then u
0
e
x
2
D e
x
2
3x C 2u
2x C 3u
, so
u
0
D
3x C 2u
2x C 3u
, which can be rewritt en as (A) .3x C2u/ dx C.2xC3u/ du D 0. Since
@
@u
.3x C2u/ D
@
@x
.2x C 3u/ D 2, (A) is exact. To solve (A) we must find F such t hat (A) F
x
.x; u/ D 3x C 2u and
(B) F
u
.x; u/ D 2x C 3u. Integrating (A) with respect to x yields (C) F .x; u/ D
3x
2
2
C 2xu C .u/.
Differentiatin g (C) with respect to u yields (D) F
u
.x; u/ D 2x C
0
.u/. Co mparing (D) with (B) shows
that
0
.u/ D 3u, so we take .u/ D
3u
2
2
. Substituting this into (C) yi el ds F .x; u/ D
3x
2
2
C 2xu C
3u
2
2
. Therefore,
3x
2
2
C 2xu C
3u
2
2
D c. Since y.0/ D 1 ) u.0/ D 1; c D
3
2
. Therefore,
3x
2
C4xu C3u
2
D 3 is an implicit solution of the initial value problem. Rewriting this as 3u
2
C4xu C
.3x
2
3/ D 0 and solving for u by means of the quadratic formula yields u D
2x C
p
9 5x
2
3
!
, so
y D e
x
2
2x C
p
9 5x
2
3
!
.
2.5.42. Since M dx C N dy D 0 is exact, (A) M
y
D N
x
. Since N dx C M dy D 0 is exact, (B)
M
x
D N
y
. Differentiating (A) with respect to y and (B) with respect to x yields (C) M
yy
D N
xy
and
(D) M
xx
D N
yx
. Since N
xy
D N
yx
, adding (C) and (D) yields M
xx
C M
yy
D 0. Differentiating
(A) with respect to x and (B) with respect to y yields (E) M
yx
D N
xx
and (F) M
xy
D N
yy
. Since
M
xy
D M
yx
, subtracting (F) from (E) yields N
xx
C N
yy
D 0.
2.5.44. (a) If F .x; y/ D x
2
y
2
, then F
x
.x; y/ D 2x, F
y
.x; y/ D 2y, F
xx
.x; y/ D 2, and
F
yy
.x; y/ D 2. Therefore, F
xx
C F
yy
D 0, and G must satisfy (A) G
x
.x; y/ D 2y and (B)
G
y
.x; y/ D 2x. Integrati ng (A) with respect to x yields (C) G.x; y/ D 2xy C .y/. Differentiating (C)
with respect to y yields (D) G
y
.x; y/ D 2x C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D 0, so
we take .y/ D c. Substituting this into (C) yields G.x; y/ D 2xy C c.
(b) If F .x; y/ D e
x
cos y, then F
x
.x; y/ D e
x
cos y, F
y
.x; y/ D e
x
sin y, F
xx
.x; y/ D e
x
cos y,
and F
yy
.x; y/ D e
x
cos y. Therefore, F
xx
C F
yy
D 0, and G must satisfy (A) G
x
.x; y/ D e
x
sin y
and (B ) G
y
.x; y/ D e
x
cos y. Integrating (A) with respect to x yields (C) G.x; y/ D e
x
sin y C .y/.
Differentiatin g (C) with respect to y yields (D) G
y
.x; y/ D e
x
cos y C
0
.y/. Comparing (D) with (B)
shows that
0
.y/ D 0, so we take .y/ D c. Substi tuting this into (C) yields G.x; y/ D e
x
sin y C c.
(c) If F .x; y/ D x
3
3xy
2
, then F
x
.x; y/ D 3x
2
3y
2
, F
y
.x; y/ D 6xy, F
xx
.x; y/ D 6x,
and F
yy
.x; y/ D 6x. Therefore, F
xx
C F
yy
D 0, and G must satisfy (A) G
x
.x; y/ D 6xy and
(B) G
y
.x; y/ D 3x
2
3y
2
. Integrat ing (A) with respect to x yields (C) G.x; y/ D 3x
2
y C .y/.
Differentiatin g (C) with respect to y yields (D) G
y
.x; y/ D 3x
2
C
0
.y/. Comparing (D) with (B)
shows that
0
.y/ D 3y
2
, so we take .y/ D y
3
C c. Substituting this into (C) yields G.x; y/ D
3x
2
y y
3
C c.
(d) If F .x; y/ D cos x cosh y, then F
x
.x; y/ D sin x cosh y, F
y
.x; y/ D cos x sinh y, F
xx
.x; y/ D
Section 2.6
Exact Equations
21
cos x cosh y, and F
yy
.x; y/ D cos x cosh y. Therefore, F
xx
C F
yy
D 0, and G must satisfy (A)
G
x
.x; y/ D cos x sinh y and (B ) G
y
.x; y/ D sin x cosh y. Integrat ing ( A ) with respect to x yields
(C) G.x; y/ D sin x sinh y C .y/. Differentiating (C) with respect to y yields (D) G
y
.x; y/ D
sin x cosh y C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D 0, so we take .y/ D c. Substituting
this into (C) yields G.x; y/ D sin x sinh y C c.
(e) If F .x; y/ D sin x cosh y, then F
x
.x; y/ D cos x cosh y, F
y
.x; y/ D sin x sinh y, F
xx
.x; y/ D
sin x cosh y, and F
yy
.x; y/ D sin x cosh y. Therefore, F
xx
C F
yy
D 0, and G must satisfy (A)
G
x
.x; y/ D sin x sinh y and (B) G
y
.x; y/ D cos x cosh y. Integrating (A) with respect to x yields
(C) G.x; y/ D cos x sinh y C .y/. Differentiatin g (C) with respect to y yields (D) G
y
.x; y/ D
cos x cosh y C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D 0, so we take .y/ D c. Substi-
tuting this into (C) yields G.x; y/ D cos x sinh y C c.
2.6 INTEGRATING FACTORS
2.6.2. (a) and (b). To show that .x; y/ D
1
.x y/
2
is an integrating factor for (A) and th at (B) is exact,
it suffices to observe that
@
@x
xy
x y
D
y
2
.x y/
2
and
@
@y
xy
x y
D
x
2
.x y/
2
. By Theorem 2.5.1
this also sh ows that (C) is an implicit solution of (B). Since .x; y/ is never zero, any solution of (B) is
a sol ution of (A).
(c) If we interpret (A) as y
2
C x
2
y
0
D 0, then substituting y D x yields x
2
C x
2
1 D 0.
(NOTE: In Exercises 2.6.3–2.6.23, the given equation is multiplied by an integrating factor to produce
an exact equation, and an implicit solution is found for th e latter. For a complete analy sis of the relation-
ship between the sets of solutions of the two equations it is necessary to check for additional solutions of
the given equation “along which" the integrating factor is undefined, or for solutions of the exact equation
“along whi ch" the integrating factor vanishes. In the inter ests of brevity we omit these tedious details
except in cases where th ere actually is a difference between the sets of sol utions of the two equations.)
2.6.4. M.x; y/ D 3x
2
y; N.x; y/ D 2x
3
; M
y
.x; y/ N
x
.x; y/ D 3x
2
6x
2
D 3x
2
; p.x/ D
M
y
.x; y/ N
x
.x; y/
N.x; y/
D
3x
2
2x
3
D
3
2x
;
R
p.x/ dx D
3
2
ln jxj; .x/ D P .x/ D x
3=2
; th ere-
fore 3x
1=2
y dx C 2x
3=2
dy D 0 is exact. We must find F su ch that (A) F
x
.x; y/ D 3x
1=2
y and (B)
F
y
.x; y/ D 2x
3=2
. Integrating (A) with respect to x yields (C) F .x; y/ D 2x
3=2
y C .y/. Differenti-
ating (C) with respect to y y ields (D) F
y
.x; y/ D 2x
3=2
C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D 0, so we take .y/ D 0. Substituting th is into (C) yields F.x; y/ D 2x
3=2
y, so x
3=2
y D c.
2.6.6. M.x; y/ D 5xy C2y C5; N.x; y/ D 2x; M
y
.x; y/ N
x
.x; y/ D .5x C2/ 2 D 5x; p.x/ D
M
y
.x; y/ N
x
.x; y/
N.x; y/
D
5x
2x
D
5
2
;
R
p.x/ dx D
5x
2
; .x/ D P .x/ D e
5x=2
; therefore e
5x=2
.5xy C
2y C 5/ dx C2xe
5x=2
dy D 0 is exact . We must find F such that (A) F
x
.x; y/ D e
5x=2
.5xy C 2y C5/
and (B) F
y
.x; y/ D 2xe
5x=2
. I ntegrating (B) with resp ect to y yields ( C) F .x; y/ D 2xye
5x=2
C .x/.
Differentiatin g (C) with respect to x yields (D) F
x
.x; y/ D 5xye
5x=2
C 2ye
5x=2
C
0
.x/. C omparing
(D) with (A) shows that
0
.x/ D 5e
5x=2
, so we take .x/ D 2e
5x=2
. Substituting this into (C) yields
F .x; y/ D 2e
5x=2
.xy C 1/, so e
5x=2
.xy C 1/ D c.
2.6.8. M.x; y/ D 27xy
2
C 8y
3
; N.x; y/ D 18x
2
y C 12xy
2
; M
y
.x; y/ N
x
.x; y/ D .54xy C
24y
2
/ .36xy C 12y
2
/ D 18xy C 12y
2
; p.x/ D
M
y
.x; y/ N
x
.x; y/
N.x; y/
D
18xy C12y
2
18x
2
y C12y
2
x
D
1
x
;
R
p.x/ dx D ln jxj; .x/ D P .x/ D x; therefore .27x
2
y
2
C8xy
3
/ dx C.18x
3
y C12x
2
y
2
/ dy D 0 is
exact. We must find F such that (A) F
x
.x; y/ D 27x
2
y
2
C8xy
3
and (B) F
y
.x; y/ D 18x
3
y C12x
2
y
2
.
Integrating (A) with respect to x yields (C) F .x; y/ D 9x
3
y
2
C 4x
2
y
3
C .y/. Differentiating (C)
22 Chapter 2
Integrating Factors
with respect to y yields (D) F
y
.x; y/ D 18x
3
y C 12x
2
y
2
C
0
.y/. Comparing (D) wi th (B) shows
that
0
.y/ D 0, so w e take .y/ D 0. Substituting this into (C) yields F.x; y/ D 9x
3
y
2
C 4x
2
y
3
, so
x
2
y
2
.9x C 4y/ D c.
2.6.10. M.x; y/ D y
2
; N.x; y/ D
xy
2
C 3xy C
1
y
; M
y
.x; y/ N
x
.x; y/ D 2y .y
2
C 3y/ D
y.y C 1/; q.y/ D
N
x
.x; y/ M
y
.x; y/
M.x; y/
D
y.y C 1/
y
2
D 1 C
1
y
;
R
q.y/ dy D y ln jyj; .y/ D
Q.y/ D ye
y
; ther efore y
3
e
y
dx C e
y
.xy
3
C 3xy
2
C 1/ dy D 0 is exact. We must find F such that
(A) F
x
.x; y/ D y
3
e
y
and (B) F
y
.x; y/ D e
y
.xy
3
C 3xy
2
C 1/. Integrating (A) with respect to x
yields (C) F .x; y/ D xy
3
e
y
C .y/. Differentiating (C) with respect to y yields (D) F
y
.x; y/ D
xy
3
e
y
C 3xy
2
e
y
C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D e
y
, so we take .y/ D e
y
.
Substituting this into (C) yields F .x; y/ D xy
3
e
y
C e
y
, so e
y
.xy
3
C 1/ D c.
2.6.12. M.x; y/ D x
2
y C4xy C2y; N.x; y/ D x
2
Cx; M
y
.x; y/N
x
.x; y/ D .x
2
C4x C2/.2x C
1/ D x
2
C 2x C 1 D .x C 1/
2
; p.x/ D
M
y
.x; y/ N
x
.x; y/
N.x; y/
D
.x C 1/
2
x.x C 1/
D 1 C
1
x
;
R
p.x/ dx D
x Cln jxj; .x/ D P .x/ D xe
x
; th erefore e
x
.x
3
y C4x
2
y C2xy/ dx C e
x
.x
3
Cx
2
/ dy D 0 is exact.
We must find F such that (A) F
x
.x; y/ D e
x
.x
3
y C 4x
2
y C 2xy/ and (B) F
y
.x; y/ D e
x
.x
3
C x
2
/.
Integrating (B) with respect to y y ields (C) F .x; y/ D y.x
3
C x
2
/e
x
C .x/. Di fferentiating (C) with
respect to x yields (D) F
x
.x; y/ D e
x
.x
3
y C 4x
2
y C 2xy/ C
0
.x/. Comparing (D) with (A) shows
that
0
.x/ D 0, so we take .x/ D 0. Substituting this into (C) yield s F.x; y/ D y.x
3
C x
2
/e
x
D
x
2
y.x C 1/e
x
, so x
2
y.x C1/e
x
D c.
2.6.14. M.x; y/ D cos x cos y; N.x; y/ D sin x cos y sin x sin y C y; M
y
.x; y/ N
x
.x; y/ D
cos x sin y.cos x cos ycos x sin y/ D cos x cos y; q.y/ D
N
x
.x; y/ M
y
.x; y/
M.x; y/
D
cos x cos y
cos x cos y
D
1;
R
q.y/ dy D 1; .y/ D Q.y/ D e
y
; therefore e
y
cos x cos y dx C e
y
.sin x cos y sin x sin y C
y/ dy D 0 is exact. We must find F such that ( A) F
x
.x; y/ D e
y
cos x cos y and (B) F
y
.x; y/ D
e
y
.sin x cos y sin x sin y Cy/. Integrat ing (A) with respect to x yields (C) F .x; y/ D e
y
sin x cos y C
.y/. Differentiating (C) with r espect to y yields (D) F
y
.x; y/ D e
y
.sin x cos y sin x sin y/ C
0
.y/.
Comparing (D) wi th (B) shows that
0
.y/ D ye
y
, so we take .y/ D e
y
.y 1/. Substituting this into
(C) yields F .x; y/ D e
y
.sin x cos y C y 1/, so e
y
.sin x cos y C y 1/ D c.
2.6.16. M.x; y/ D y sin y; N.x; y/ D x.sin y y cos y/; M
y
.x; y/ N
x
.x; y/ D .y cos y Csin y/
.sin y y cos y/ D 2y cos y; q.y/ D
N
x
.x; y/ M
y
.x; y/
N.x; y/
D
2 cos y
sin y
;
R
q.y/ dy D 2 ln jsin yj;
.y/ D Q.y/ D
1
sin
2
y
; therefore
y
sin y
dx C x
1
sin y
y cos y
sin
2
y
dy D 0 i s exact. We must
find F such that (A) F
x
.x; y/ D
y
sin y
and (B) F
y
.x; y/ D x
1
sin y
y cos y
sin
2
y
. Integrating (A)
with respect to x yi el ds (C) F .x; y/ D
xy
sin y
C .y/. Differentiating (C) with respect to y yields (D)
F
y
.x; y/ D x
1
sin y
y cos y
sin
2
y
C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D 0, so we take
.y/ D 0. Substituting this into (C) yields F .x; y/ D
xy
sin y
, so
xy
sin y
D c. In addition, the given
equation has the constant solutions y D k, where k is an integer.
2.6.18. M.x; y/ D ˛y C xy; N.x; y/ D ˇx C ıxy; M
y
.x; y/ N
x
.x; y/ D C x/ C ıy/;
and p.x/N.x; y/ q.y/M.x; y/ D p.x/x C ıy/ q.y/y.˛ C x/. so ex actness requires that
Section 2.6
Exact Equations
23
C x/ C ıy/ D p.x/x C ıy/ q.y/y.˛ C x/, which holds if p.x/x D 1 and q.y/y D
1. Thus p.x/ D
1
x
; q.y/ D
1
y
;
R
p.x/ dx D ln jxj;
R
q.y/ dy D ln jyj; P .x/ D
1
x
;
Q.y/ D
1
y
; .x; y/ D
1
xy
. Therefore,
˛
x
C
dx C
ˇ
y
C ı
dy D 0 is exact. We must find F
such that (A) F
x
.x; y/ D
˛
x
C and ( B) F
y
.x; y/ D
ˇ
y
C ı. Integrating (A) wit h respect to x yields
(C) F .x; y/ D ˛ ln jxj C x C .y/. Differentiating (C) with respect to y yields (D) F
y
.x; y/ D
0
.y/.
Comparing (D) with (B) shows that
0
.y/ D
ˇ
y
C ı, so we take .y/ D ˇ ln jyj C ıy. Substituting this
into (C) yields F .x; y/ D ˛ ln jxjCx Cˇ ln jyjCıy, so jxj
˛
jyj
ˇ
e
x
e
ıy
D c. The given equation also
has t he solutions x 0 and y 0.
2.6.20. M.x; y/ D 2y; N.x; y/ D 3.x
2
C x
2
y
3
/; M
y
.x; y/ N
x
.x; y/ D 2 .6x C 6xy
3
/; and
p.x/N.x; y/ q.y/M.x; y/ D 3p.x/.x
2
C x
2
y
3
/ 2q.y/y. so exactness r equires that (A) 2 6x
6xy
3
D 3p.x/x.x C xy
3
/ 2q.y/y. To o btain similar terms on the two sides of (A) we let p.x/x D a
and q.y/y D b where a and b are constants such that 2 6x 6xy
3
D 3a.x Cxy
3
/2b, which hol ds if
a D 2 and b D 1. Thus, p.x/ D
2
x
; q.y/ D
1
y
;
R
p.x/ dx D 2 ln jxj;
R
q.y/ dy D ln jyj;
P.x/ D
1
x
2
; Q.y/ D
1
y
; .x; y/ D
1
x
2
y
. Therefore,
2
x
2
dx C 3
1
y
C y
2
dy D 0 is exact. We must
find F such that (B) F
x
.x; y/ D
2
x
2
and (C) F
y
.x; y/ D 3
1
y
C y
2
. Integrating (B) with respect to x
yields (D) F .x; y/ D
2
x
C .y/. Differentiating (D) with respect to y yields (E) F
y
.x; y/ D
0
.y/.
Comparing (E) with (C) shows that
0
.y/ D 3
1
y
C y
2
, so we take .y/ D y
3
C3 ln jyj. Substituting
this into ( D) yields F .x; y/ D
2
x
Cy
3
C3 ln jyj, so
2
x
Cy
3
C3 ln jyj D c. The given equation also
has t he solutions x 0 and y 0.
2.6.22. M.x; y/ D x
4
y
4
; N.x; y/ D x
5
y
3
; M
y
.x; y/ N
x
.x; y/ D 4x
4
y
3
5x
4
y
3
D x
4
y
3
;
and p.x/N.x; y/ q.y/M.x; y/ D p.x/x
5
y
3
q.y/x
4
y
4
. so exactness requires that x
4
y
3
D
p.x/x
5
y
3
q.y/x
4
y
4
, which is equivalent to p.x/x q.y/y D 1. This holds if p.x/x D a and
q.y/y D a C 1 where a is an arbitrary real number. Thus, p.x/ D
a
x
; q.y/ D
a C 1
y
;
R
p.x/ dx D
a ln jxj;
R
q.y/ dy D .a C 1/ ln jyj; P.x/ D jxj
a
; Q.y/ D jyj
aC1
; .x; y/ D j x
a
jjyj
aC1
. Therefore,
jxj
a
jyj
aC1
x
4
y
4
dx C x
5
y
3
dy
D 0 is exact for any choice of a. For simplici ty we let a D 4, so (A)
is equivalent to y dx C x dy D 0. We must find F such that (B) F
x
.x; y/ D y and (C) F
y
.x; y/ D x.
Integrating (B) with respect to x yields (D) F .x; y/ D xy C .y/. Differentiating (D) with respect to y
yields (E) F
y
.x; y/ D x C
0
.y/. Comparing (E) with (C) shows that
0
.y/ D 0, so we take .y/ D 0.
Substituting this into (D) yiel ds F.x; y/ D xy, so xy D c.
2.6.24. M.x; y/ D x
4
y
3
Cy; N.x; y/ D x
5
y
2
x; M
y
.x; y/ N
x
.x; y/ D .3x
4
y
2
C1/ .5x
4
y
2
1/ D 2x
4
y
2
C 2; p.x/ D
M
y
.x; y/ N
x
.x; y/
N.x; y/
D
2x
4
y
2
2
x
5
y
2
x
D
2
x
;
R
p.x/ dx D 2 ln jxj;
.x/ D P .x/ D
1
x
2
; therefore
x
2
y
3
C
y
x
2
dx C
x
3
y
2
1
x
dy D 0 is exact. We must find
F such that (A) F
x
.x; y/ D
x
2
y
3
C
y
x
2
and (B) F
y
.x; y/ D
x
3
y
2
1
x
. Integrating (A) wit h
24 Chapter 2
Integrating Factors
respect to x yields (C) F .x; y/ D
x
3
y
3
3
y
x
C .y/. Differentiating (C) with respect to y yields (D)
F
y
.x; y/ D x
3
y
2
1
x
C
0
.y/. Comparing (D) with (B) shows that
0
.y/ D 0, so we take .y/ D 0.
Substituting this into (C) yields F .x; y/ D
x
3
y
3
3
y
x
, so
x
3
y
3
3
y
x
D c.
2.6.26. M.x; y/ D 12xy C 6y
3
; N.x; y/ D 9x
2
C 10xy
2
; M
y
.x; y/ N
x
.x; y/ D .12x C 18y
2
/
.18xC10y
2
/ D 6x C8y
2
; and p.x/N.x; y/q.y/M.x; y/ D p.x/x.9xC10y
2
/q.y/y.12xC6y
2
/,
so exactness requires that (A) 6x C8y
2
D p.x/x.9x C10y
2
/ q.y/y.12x C6y
2
/. To obtai n similar
terms on the two sides of (A) we let p.x/x D a and q.y/y D b where a and b are constants such that
6x C 8y
2
D a.9x C 10y
2
/ b.12x C 6y
2
/, which holds if 9a 12b D 6, 10a 6b D 8; that is,
a D b D 2. Thus p.x/ D
2
x
; q.y/ D
2
y
;
R
p.x/ dx D 2 ln jxj;
R
q.y/ dy D 2 lnjyj; P.x/ D x
2
;
Q.y/ D y
2
; .x; y/ D x
2
y
2
. Therefore, .12x
3
y
3
C 6x
2
y
5
/ dx C .9x
4
y
2
C 10x
3
y
4
/ dy D 0 is exact.
We must find F such that (B) F
x
.x; y/ D 12x
3
y
3
C 6x
2
y
5
and (C) F
y
.x; y/ D 9x
4
y
2
C 10x
3
y
4
.
Integrating (B) with respect to x yields (D) F .x; y/ D 3x
4
y
3
C 2x
3
y
5
C .y/. Differentiating (D)
with respect t o y yields (E) F
y
.x; y/ D 9x
4
y
2
C 10x
3
y
4
C
0
.y/. Comparing (E) with (C) shows that
0
.y/ D 0, so we take .y/ D 0. Substituting this into (D) yields F .x; y/ D 3x
4
y
3
C 2x
3
y
5
, so
x
3
y
3
.3x C 2y
2
/ D c.
2.6.28. M.x; y/ D ax
m
yCby
nC1
; N.x; y/ D cx
mC1
Cdxy
n
; M
y
.x; y/N
x
.x; y/ D
ax
mC1
C .n C 1/by
n
Œ.m C 1/cx
m
C dy
n
; p.x/N.x; y/ q.y/M.x; y/ D xp.x/.cx
m
C dy
n
/ yp.y/.ax
m
C by
n
/. Let
(A) xp.x/ D ˛ and (B) yp.y/ D ˇ, where ˛ and ˇ are to be chosen so that
ax
mC1
C .n C 1/by
n
Œ.m C 1/cx
m
C dy
n
D ˛.cx
m
C dy
n
/ ˇ.ax
m
Cby
n
/, which will hol d if
c˛ aˇ D a .m C 1/c D
df
A
d˛ D d C .n C 1/b D
df
B:
.C/
Since ad bc ¤ 0 it can be verified that ˛ D
aB bA
ad bc
and ˇ D
cB dA
ad bc
satisfy (C). From (A) and
(B), p.x/ D
˛
x
and q.y/ D
ˇ
y
, so .x; y/ D x
˛
y
ˇ
is an integrating factor for the given equation.
2.6.30. (a) Since M.x; y/ D p.x/y f .x/ and N.x; y/ D 1,
M
y
.x; y/ N
x
.x; y/
N.x; y/
D p.x/ and
Theorem 2.6.1 implies that .x/ ˙ e
R
p.x/ d x
is an integrating factor for (C).
(b) Mul tiplying (A) through D ˙e
R
p.x/ d x
yields (D) .x/y
0
C
0
.x/y D .x/f .x/, which is
equivalent to ..x/y/
0
D .x/f .x/. Integrating this yields .x/y D c C
Z
.x/f .x/ dx, so y D
1
.x/
c C
Z
.x/f .x/ dx
, which i s equivalent to (B) since y
1
D
1
is a nont riv ial solution of y
0
C
p.x/y D 0.
CHAPTER 3
Numerica l Methods
3.1 EULER’S METHOD
3.1.2. y
1
D 1:200000000; y
2
D 1:440415946; y
3
D 1:729880994
3.1.4. y
1
D 2:962500000; y
2
D 2:922635828; y
3
D 2:880205639
3.1.6.
x h D 0 :1 h D 0 :05 h D 0 :025 Exact
0.0 2.000000000 2.000000000 2.000000000 2.000000000
0.1 2.100000000 2.169990965 2.202114518 2.232642918
0.2 2.514277288 2.649377900 2.713011720 2.774352565
0.3 3.317872752 3.527672599 3.628465025 3.726686582
0.4 4.646592772 4.955798226 5.106379369 5.254226636
0.5 6.719737638 7.171467977 7.393322991 7.612186259
0.6 9.876155616 10.538384528 10.865186799 11.18847526 9
0.7 14.629 532397 15.605686107 16.088630652 16.567103199
0.8 21.751 925418 23.197328550 23.913328531 24.623248150
0.9 32.399 118931 34.545932627 35.610005377 36.665439956
1.0 48.298 147362 51.492825643 53.076673685 54.647937102
3.1.8.
x h D 0 :05 h D 0:025 h D 0:0125 Exact
1.00 2.000 000000 2.000000000 2.000000000 2.000000000
1.05 2.250 000000 2.259280190 2.264490570 2.270158103
1.10 2.536 734694 2.559724746 2.572794280 2.587150838
1.15 2.867 950854 2.910936426 2.935723355 2.963263785
1.20 3.253 613825 3.325627715 3.367843117 3.415384615
1.25 3.706 750613 3.820981064 3.889251900 3.967391304
1.30 4.244 700641 4.420781829 4.528471927 4.654198473
1.35 4.891 020001 5.158883503 5.327348558 5.528980892
1.40 5.678 467290 6.085075790 6.349785943 6.676923077
1.45 6.653 845988 7.275522641 7.698316221 8.243593315
1.50 7.886 170437 8.852463793 9.548039907 10.500000000
25
26 Chapter 3
Numerical Methods
3.1.10.
x h D 0:1 h D 0:05 h D 0:025 h D 0:1 h D 0:05 h D 0:025
1.0 1.0000 00000 1.000000000 1.000000000 0.0000 0.0000 0.0000
1.1 0.9200 00000 0.921898275 0.922822717 -0.0384 -0.0189 -0.0094
1.2 0.8474 69326 0.851018464 0.852746371 -0.0745 -0.0368 -0.0183
1.3 0.7817 79403 0.786770087 0.789197876 -0.1092 -0.0540 -0.0268
1.4 0.7224 53556 0.728682209 0.731709712 -0.1428 -0.0707 -0.0351
1.5 0.6690 37867 0.676299618 0.679827306 -0.1752 -0.0868 -0.0432
1.6 0.6210 54176 0.629148585 0.633080163 -0.2062 -0.1023 -0.0509
1.7 0.5780 00416 0.586740390 0.590986601 -0.2356 -0.1170 -0.0583
1.8 0.5393 70187 0.548588902 0.553070392 -0.2631 -0.1310 -0.0653
1.9 0.5046 74296 0.514228603 0.518877246 -0.2889 -0.1441 -0.0719
2.0 0.4734 56737 0.483227470 0.487986391 -0.3129 -0.1563 -0.0781
Approximate Solutions Residuals
3.1.12.
x h D 0:1 h D 0:05 h D 0:025 “Exact"
1.0 0.000000000 0.000000000 0.000000000 0.000000000
1.1 -0.100000000 -0.099875000 -0.099780455 -0.099664000
1.2 -0.199000000 -0.198243434 -0.197800853 -0.197315517
1.3 -0.294996246 -0.293129862 -0.292110713 -0.291036003
1.4 -0.386095345 -0.382748403 -0.380986158 -0.379168221
1.5 -0.470695388 -0.465664569 -0.463078857 -0.460450590
1.6 -0.547627491 -0.540901018 -0.537503081 -0.534085626
1.7 -0.616227665 -0.607969574 -0.603849795 -0.599737720
1.8 -0.676329533 -0.666833345 -0.662136956 -0.657473792
1.9 -0.728190908 -0.717819639 -0.712718751 -0.707670533
2.0 -0.772381768 -0.761510960 -0.756179726 -0.750912371
3.1.14.
Euler’s method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
2.0 2.000000000 2.000000000 2.000000000 2.000000000
2.1 2.420000000 2.440610764 2.451962006 2.464119569
2.2 2.922484288 2.972198224 2.999753046 3.029403212
2.3 3.524104434 3.614025082 3.664184099 3.718409925
2.4 4.244823572 4.389380160 4.470531822 4.558673929
2.5 5.108581185 5.326426396 5.449503467 5.583808754
2.6 6.144090526 6.459226591 6.638409411 6.834855438
2.7 7.385795229 7.828984275 8.082588076 8.361928926
2.8 8.875017001 9.485544888 9.837137672 10.226228709
2.9 10.661 332618 11.489211987 11.969020902 12.502494409
3.0 12.804 226135 13.912944662 14.559623055 15.282004826
Euler semilinear method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
2.0 2.000000000 2.000000000 2.000000000 2.000000000
2.1 2.467233571 2.465641081 2.464871435 2.464119569
2.2 3.036062650 3.032657307 3.031011316 3.029403212
2.3 3.729169725 3.723668026 3.721008466 3.718409925
2.4 4.574236356 4.566279470 4.562432696 4.558673929
2.5 5.605052990 5.594191643 5.588940276 5.583808754
2.6 6.862874116 6.848549921 6.841623814 6.834855438
2.7 8.398073101 8.379595572 8.370660695 8.361928926
2.8 10.272163096 10.248681420 10.237326199 10.226228709
2.9 12.560265110 12.530733531 12.516452106 12.502494409
3.0 15.354122287 15.317257705 15.299429421 15.282004826
Section 3.1
Euler’s Method
27
3.1.16.
Euler’s method
x h D 0:2 h D 0:1 h D 0:05 “Exact"
1.0 2.0000 00000 2.000000000 2.000000000 2.000000000
1.2 1.7682 94197 1.786514499 1.794412375 1.801636774
1.4 1.6030 28371 1.628427487 1.639678822 1.650102616
1.6 1.4745 80412 1.502563111 1.515157063 1.526935885
1.8 1.3683 49549 1.396853671 1.409839229 1.422074283
2.0 1.2764 24761 1.304504818 1.317421794 1.329664953
2.2 1.1942 47156 1.221490111 1.234122458 1.246155344
2.4 1.1190 88175 1.145348276 1.157607418 1.169334346
2.6 1.0492 84410 1.074553688 1.086419453 1.097812069
2.8 0.9838 21745 1.008162993 1.019652023 1.030719114
3.0 0.9220 94379 0.945604800 0.956752868 0.967523153
Euler semilinear method
x h D 0 :2 h D 0:1 h D 0:05 “E xact"
1.0 2.000000000 2.000000000 2.000000000 2.00000 0000
1.2 1.806911831 1.804304958 1.802978526 1.80163 6774
1.4 1.659738603 1.654968381 1.652547436 1.65010 2616
1.6 1.540257861 1.533652916 1.530308405 1.52693 5885
1.8 1.438532932 1.430361800 1.426232584 1.42207 4283
2.0 1.348782285 1.339279577 1.334486249 1.32966 4953
2.2 1.267497415 1.256876924 1.251528766 1.24615 5344
2.4 1.192497494 1.180958765 1.175157264 1.16933 4346
2.6 1.122416379 1.110147777 1.103988310 1.09781 2069
2.8 1.056405906 1.043585743 1.037158237 1.03071 9114
3.0 0.993954754 0.980751307 0.974140320 0.96752 3153
3.1.18.
Euler’s method
x h D 0:2 h D 0:1 h D 0:05 “Exact"
0.0 1.0000 00000 1.000000000 1.000000000 1.000000000
0.2 1.2000 00000 1.186557290 1.179206574 1.171515153
0.4 1.3335 43409 1.298441890 1.280865289 1.263370891
0.6 1.3713 40142 1.319698328 1.295082088 1.271251278
0.8 1.3263 67357 1.270160237 1.243958980 1.218901287
1.0 1.2330 56306 1.181845667 1.158064902 1.135362070
1.2 1.1223 59136 1.080477477 1.060871608 1.042062625
1.4 1.0131 00262 0.981124989 0.965917496 0.951192532
1.6 0.9140 00211 0.890759107 0.879460404 0.868381328
1.8 0.8278 48558 0.811673612 0.803582000 0.795518627
2.0 0.7545 72560 0.743869878 0.738303914 0.732638628
Euler semilinear method
x h D 0 :2 h D 0:1 h D 0:05 “E xact"
0.0 1.000000000 1.000000000 1.000000000 1.00000 0000
0.2 1.153846154 1.162906599 1.167266650 1.17151 5153
0.4 1.236969953 1.250608357 1.257097924 1.26337 0891
0.6 1.244188456 1.258241892 1.264875987 1.27125 1278
0.8 1.195155456 1.207524076 1.213335781 1.21890 1287
1.0 1.115731189 1.125966437 1.130768614 1.13536 2070
1.2 1.025938754 1.034336918 1.038283392 1.04206 2625
1.4 0.937645707 0.944681597 0.948002346 0.95119 2532
1.6 0.856581823 0.862684171 0.865583126 0.86838 1328
1.8 0.784832910 0.790331183 0.792963532 0.79551 8627
2.0 0.722610454 0.727742966 0.730220211 0.73263 8628
28 Chapter 3
Numerical Methods
3.1.20.
Euler’s method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
0.0 1.0000 00000 1.000000000 1.000000000 1.000000000
0.1 0.7000 00000 0.725841563 0.736671690 0.746418339
0.2 0.4983 30000 0.532982493 0.547988831 0.561742917
0.3 0.3562 72689 0.392592562 0.408724303 0.423724207
0.4 0.2545 55443 0.289040639 0.304708942 0.319467408
0.5 0.1814 40541 0.212387189 0.226758594 0.240464879
0.6 0.1289 53069 0.155687255 0.168375130 0.180626161
0.7 0.0913 93543 0.113851516 0.124744976 0.135394692
0.8 0.0646 13612 0.083076641 0.092230966 0.101293057
0.9 0.0455 85102 0.060505907 0.068068776 0.075650324
1.0 0.0321 05117 0.043997045 0.050159310 0.056415515
Euler semilinear method
x h D 0 :1 h D 0:05 h D 0:025 Exact"
0.0 1.000000000 1.000000000 1.000000000 1.00000 0000
0.1 0.740818221 0.743784320 0.745143557 0.74641 8339
0.2 0.555889275 0.558989106 0.560410719 0.56174 2917
0.3 0.418936461 0.421482025 0.422642541 0.42372 4207
0.4 0.315890439 0.317804400 0.318668549 0.31946 7408
0.5 0.237908421 0.239287095 0.239902094 0.24046 4879
0.6 0.178842206 0.179812811 0.180239888 0.18062 6161
0.7 0.134165506 0.134840668 0.135133367 0.13539 4692
0.8 0.100450939 0.100918118 0.101117514 0.10129 3057
0.9 0.075073968 0.075396974 0.075532643 0.07565 0324
1.0 0.056020154 0.056243980 0.056336491 0.05641 5515
3.1.22.
Euler’s method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
2.0 1.0000 00000 1.000000000 1.000000000 1.000000000
2.1 1.0000 00000 1.005062500 1.007100815 1.008899988
2.2 1.0205 00000 1.026752091 1.029367367 1.031723469
2.3 1.0534 89840 1.059067423 1.061510137 1.063764243
2.4 1.0935 21685 1.097780573 1.099748225 1.101614730
2.5 1.1371 37554 1.140059654 1.141496651 1.142903776
2.6 1.1822 69005 1.184090031 1.185056276 1.186038851
2.7 1.2277 45005 1.228755801 1.229350441 1.229985178
2.8 1.2729 40309 1.273399187 1.273721920 1.274092525
2.9 1.3175 45833 1.317651554 1.317786528 1.317967533
3.0 1.3614 27907 1.361320824 1.361332589 1.361383810
Euler semilinear method
x h D 0 :1 h D 0:05 h D 0:025 Exact"
2.0 1.000000000 1.000000000 1.000000000 1.00000 0000
2.1 0.982476904 0.996114142 1.002608435 1.00889 9988
2.2 0.988105346 1.010577663 1.021306044 1.03172 3469
2.3 1.009495813 1.037358814 1.050731634 1.06376 4243
2.4 1.041012955 1.071994816 1.086964414 1.10161 4730
2.5 1.078631301 1.111346365 1.127262285 1.14290 3776
2.6 1.119632590 1.153300133 1.169781376 1.18603 8851
2.7 1.162270287 1.196488725 1.213325613 1.22998 5178
2.8 1.205472927 1.240060456 1.257146091 1.27409 2525
2.9 1.248613584 1.283506001 1.300791772 1.31796 7533
3.0 1.291345518 1.326535737 1.344004102 1.36138 3810
Section 3.2
The Improved Euler Method and R el ated Methods
29
3.2 THE IMPROVED EULER METHOD AND RELATED METHODS
3.2.2. y
1
D 1:220207973; y
2
D 1:489578775 y
3
D 1:819337186
3.2.4. y
1
D 2:961317914; y
2
D 2:920132727; y
3
D 2:876213748.
3.2.6.
x h D 0 :1 h D 0 :05 h D 0 :025 Exact
0.0 2.000000000 2.000000000 2.000000000 2.000000000
0.1 2.257138644 2.238455342 2.234055168 2.232642918
0.2 2.826004666 2.786634110 2.777340360 2.774352565
0.3 3.812671926 3.747167263 3.731674025 3.726686582
0.4 5.387430580 5.285996803 5.261969043 5.254226636
0.5 7.813298361 7.660199197 7.623893064 7.612186259
0.6 11.489 337756 11.260349005 11.206005869 11.188475269
0.7 17.015 861211 16.674352914 16.593267820 16.567103199
0.8 25.292 140630 24.783149862 24.662262731 24.623248150
0.9 37.662 496723 36.903828191 36.723608928 36.665439956
1.0 56.134 480009 55.003390448 54.734674836 54.647937102
3.2.8.
x h D 0:05 h D 0:025 h D 0:0125 Exact
1.00 2.000000000 2.000000000 2.000000000 2.000000000
1.05 2.268367347 2.269670336 2.270030868 2.270158103
1.10 2.582607299 2.585911295 2.586827341 2.587150838
1.15 2.954510022 2.960870733 2.962638822 2.963263785
1.20 3.400161788 3.411212150 3.414293964 3.415384615
1.25 3.942097142 3.960434900 3.965570792 3.967391304
1.30 4.612879780 4.642784826 4.651206769 4.654198473
1.35 5.461348619 5.510188575 5.524044591 5.528980892
1.40 6.564150753 6.645334756 6.668600859 6.676923077
1.45 8.048579617 8.188335998 8.228972215 8.243593315
1.50 10.14 1969585 10.396770 409 10.472502111 10.500000000
3.2.10.
x h D 0:1 h D 0:05 h D 0:025 h D 0:1 h D 0:05 h D 0:025
1.0 1.0000 00000 1.000000000 1.000000000 0.00000 0.000000 0.000000
1.1 0.9237 34663 0.923730743 0.923730591 0.00004 0.000001 -0.000001
1.2 0.8544 75600 0.854449616 0.854444697 0.00035 0.000068 0.000015
1.3 0.7916 50344 0.791596016 0.791584634 0.00078 0.000167 0.000039
1.4 0.7347 85779 0.734703826 0.734686010 0.00125 0.000277 0.000065
1.5 0.6834 24095 0.683318666 0.683295308 0.00171 0.000384 0.000091
1.6 0.6370 97057 0.636973423 0.636945710 0.00213 0.000483 0.000115
1.7 0.5953 30359 0.595193634 0.595162740 0.00250 0.000572 0.000137
1.8 0.5576 58422 0.557513000 0.557479947 0.00283 0.000650 0.000156
1.9 0.5236 38939 0.523488343 0.523453958 0.00311 0.000718 0.000173
2.0 0.4928 62999 0.492709931 0.492674855 0.00335 0.000777 0.000187
Approximate Solutions Residuals
30 Chapter 3
Numerical Methods
3.2.12.
x h D 0:1 h D 0:05 h D 0:025 “Exact"
1.0 0.000000000 0.000000000 0.000000000 0.000000000
1.1 -0.099500000 -0.099623114 -0.099653809 -0.099664000
1.2 -0.196990313 -0.197235180 -0.197295585 -0.197315517
1.3 -0.290552949 -0.290917718 -0.291006784 -0.291036003
1.4 -0.378532718 -0.379013852 -0.379130237 -0.379168221
1.5 -0.459672297 -0.460262848 -0.460404546 -0.460450590
1.6 -0.533180153 -0.533868468 -0.534032512 -0.534085626
1.7 -0.598726853 -0.599496413 -0.599678824 -0.599737720
1.8 -0.656384109 -0.657214624 -0.657410640 -0.657473792
1.9 -0.706530934 -0.707400266 -0.707604759 -0.707670533
2.0 -0.749751364 -0.750637632 -0.750845571 -0.750912371
3.2.14.
Improved Euler method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
2.0 2.000000000 2.000000000 2.000000000 2.000000000
2.1 2.461242144 2.463344439 2.463918368 2.464119569
2.2 3.022367633 3.027507237 3.028911026 3.029403212
2.3 3.705511610 3.714932709 3.717507170 3.718409925
2.4 4.537659565 4.553006531 4.557202414 4.558673929
2.5 5.551716960 5.575150456 5.581560437 5.583808754
2.6 6.787813853 6.822158665 6.831558101 6.834855438
2.7 8.294896222 8.343829180 8.357227947 8.361928926
2.8 10.132 667135 10.200955596 10.219663917 10.226228709
2.9 12.373 954732 12.467758807 12.493470722 12.502494409
3.0 15.107 600968 15.234856000 15.269755072 15.282004826
Improved Euler semilinear method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
2.0 2.000000000 2.000000000 2.000000000 2.000000000
2.1 2.464261688 2.464155139 2.464128464 2.464119569
2.2 3.029706047 3.029479005 3.029422165 3.029403212
2.3 3.718897663 3.718531995 3.718440451 3.718409925
2.4 4.559377397 4.558849990 4.558717956 4.558673929
2.5 5.584766724 5.584048510 5.583868709 5.583808754
2.6 6.836116246 6.835170986 6.834934347 6.834855438
2.7 8.363552464 8.362335253 8.362030535 8.361928926
2.8 10.228288880 10.226744312 10.226357645 10.226228709
2.9 12.505082132 12.503142042 12.502656361 12.502494409
3.0 15.285231726 15.282812424 15.282206780 15.282004826
3.2.16.
Improved Euler method
x h D 0:2 h D 0:1 h D 0:05 “Exact"
1.0 2.0000 00000 2.000000000 2.000000000 2.000000000
1.2 1.8015 14185 1.801606135 1.801629115 1.801636774
1.4 1.6499 11580 1.650054870 1.650090680 1.650102616
1.6 1.5267 11768 1.526879870 1.526921882 1.526935885
1.8 1.4218 41570 1.422016119 1.422059743 1.422074283
2.0 1.3294 41172 1.329609020 1.329650971 1.329664953
2.2 1.2459 53205 1.246104819 1.246142713 1.246155344
2.4 1.1691 62994 1.169291515 1.169323639 1.169334346
2.6 1.0976 77870 1.097778523 1.097803683 1.097812069
2.8 1.0306 26179 1.030695880 1.030713305 1.030719114
3.0 0.9674 73721 0.967510790 0.967520062 0.967523153
Section 3.2
The Improved Euler Method and R el ated Methods
31
Improved Euler semilinear me thod
x h D 0 :2 h D 0:1 h D 0:05 “E xact"
1.0 2.000000000 2.000000000 2.000000000 2.00000 0000
1.2 1.801514185 1.801606135 1.801629115 1.80163 6774
1.4 1.649911580 1.650054870 1.650090680 1.65010 2616
1.6 1.526711768 1.526879870 1.526921882 1.52693 5885
1.8 1.421841570 1.422016119 1.422059743 1.42207 4283
2.0 1.329441172 1.329609020 1.329650971 1.32966 4953
2.2 1.245953205 1.246104819 1.246142713 1.24615 5344
2.4 1.169162994 1.169291515 1.169323639 1.16933 4346
2.6 1.097677870 1.097778523 1.097803683 1.09781 2069
2.8 1.030626179 1.030695880 1.030713305 1.03071 9114
3.0 0.967473721 0.967510790 0.967520062 0.96752 3153
3.2.18.
Improved Euler method
x h D 0:2 h D 0:1 h D 0:05 “Exact"
0.0 1.0000 00000 1.000000000 1.000000000 1.000000000
0.2 1.1667 71705 1.170394902 1.171244037 1.171515153
0.4 1.2558 35116 1.261642355 1.262958788 1.263370891
0.6 1.2635 17157 1.269528214 1.270846761 1.271251278
0.8 1.2125 51997 1.217531648 1.218585457 1.218901287
1.0 1.1308 12573 1.134420589 1.135150284 1.135362070
1.2 1.0391 04333 1.041487727 1.041938536 1.042062625
1.4 0.9494 40052 0.950888923 0.951132561 0.951192532
1.6 0.8674 75787 0.868263999 0.868364849 0.868381328
1.8 0.7951 83973 0.795523696 0.795530315 0.795518627
2.0 0.7326 79223 0.732721613 0.732667905 0.732638628
Improved Euler semilinear me thod
x h D 0 :2 h D 0:1 h D 0:05 “E xact"
0.0 1.000000000 1.000000000 1.000000000 1.00000 0000
0.2 1.170617859 1.171292452 1.171459576 1.17151 5153
0.4 1.261629934 1.262938347 1.263262919 1.26337 0891
0.6 1.269173253 1.270734290 1.271122186 1.27125 1278
0.8 1.216926014 1.218409355 1.218778420 1.21890 1287
1.0 1.133688235 1.134944960 1.135257876 1.13536 2070
1.2 1.040721691 1.041728386 1.041979126 1.04206 2625
1.4 0.950145706 0.950931597 0.951127345 0.95119 2532
1.6 0.867573431 0.868179975 0.868331028 0.86838 1328
1.8 0.794899034 0.795364245 0.795480063 0.79551 8627
2.0 0.732166678 0.732521078 0.732609267 0.73263 8628
3.2.20.
Improved Euler method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
0.0 1.0000 00000 1.000000000 1.000000000 1.000000000
0.1 0.7491 65000 0.747022742 0.746561141 0.746418339
0.2 0.5659 42699 0.562667885 0.561961242 0.561742917
0.3 0.4286 18351 0.424803657 0.423978964 0.423724207
0.4 0.3245 56426 0.320590918 0.319732571 0.319467408
0.5 0.2454 17735 0.241558658 0.240723019 0.240464879
0.6 0.1852 35654 0.181643813 0.180866303 0.180626161
0.7 0.1395 46094 0.136310496 0.135610749 0.135394692
0.8 0.1049 38506 0.102096319 0.101482503 0.101293057
0.9 0.0787 87731 0.076340645 0.075813072 0.075650324
1.0 0.0590 71894 0.056999028 0.056553023 0.056415515
32 Chapter 3
Numerical Methods
Improved Euler semilinear me thod
x h D 0 :1 h D 0:05 h D 0:025 Exact"
0.0 1.000000000 1.000000000 1.000000000 1.00000 0000
0.1 0.745595127 0.746215164 0.746368056 0.74641 8339
0.2 0.560827568 0.561515647 0.561686492 0.56174 2917
0.3 0.422922083 0.423524585 0.423674586 0.42372 4207
0.4 0.318820339 0.319306259 0.319427337 0.31946 7408
0.5 0.239962317 0.240339716 0.240433757 0.24046 4879
0.6 0.180243441 0.180530866 0.180602470 0.18062 6161
0.7 0.135106416 0.135322934 0.135376855 0.13539 4692
0.8 0.101077312 0.101239368 0.101279714 0.10129 3057
0.9 0.075489492 0.075610310 0.075640381 0.07565 0324
1.0 0.056295914 0.056385765 0.056408124 0.05641 5515
3.2.22.
Improved Euler method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
2.0 1.0000 00000 1.000000000 1.000000000 1.000000000
2.1 1.0102 50000 1.009185754 1.008965733 1.008899988
2.2 1.0335 47273 1.032105322 1.031811002 1.031723469
2.3 1.0655 62151 1.064135919 1.063849094 1.063764243
2.4 1.1031 45347 1.101926450 1.101685553 1.101614730
2.5 1.1440 85693 1.143140125 1.142957158 1.142903776
2.6 1.1868 78796 1.186202854 1.186075600 1.186038851
2.7 1.2305 30804 1.230088035 1.230007943 1.229985178
2.8 1.2744 04357 1.274147657 1.274104430 1.274092525
2.9 1.3181 04153 1.317987551 1.317971490 1.317967533
3.0 1.3613 95309 1.361379259 1.361382239 1.361383810
Improved Euler semilinear me thod
x h D 0 :1 h D 0:05 h D 0:025 Exact"
2.0 1.000000000 1.000000000 1.000000000 1.00000 0000
2.1 1.012802674 1.009822081 1.009124116 1.00889 9988
2.2 1.038431870 1.033307426 1.032108359 1.03172 3469
2.3 1.072484834 1.065821457 1.064263950 1.06376 4243
2.4 1.111794329 1.104013534 1.102197168 1.10161 4730
2.5 1.154168041 1.145554968 1.143547198 1.14290 3776
2.6 1.198140189 1.188883373 1.186728849 1.18603 8851
2.7 1.242762459 1.232984559 1.230712361 1.22998 5178
2.8 1.287441845 1.277221941 1.274850828 1.27409 2525
2.9 1.331821976 1.321210992 1.318753047 1.31796 7533
3.0 1.375699933 1.364730937 1.362193997 1.36138 3810
3.2.24.
x h D 0:1 h D 0:05 h D 0:025 Exact
1.0 1.0000 00000 1.000000000 1.000000000 1.000000000
1.1 1.1510 19287 1.153270661 1.153777957 1.153937085
1.2 1.2387 98618 1.241884421 1.242580821 1.242799540
1.3 1.2892 96258 1.292573128 1.293313355 1.293546032
1.4 1.3176 86801 1.320866599 1.321585242 1.321811247
1.5 1.3330 73855 1.336036248 1.336705820 1.336916440
1.6 1.3410 27170 1.343732006 1.344343232 1.344535503
1.7 1.3450 01345 1.347446389 1.347998652 1.348172348
1.8 1.3471 55352 1.349355473 1.349852082 1.350008229
1.9 1.3488 39325 1.350816158 1.351261995 1.351402121
2.0 1.3508 90736 1.352667599 1.353067951 1.353193719
Section 3.2
The Improved Euler Method and R el ated Methods
33
3.2.26.
x h D 0 :05 h D 0 :025 h D 0:0125 Exact
1.00 2.000000000 2.000000000 2.000000000 2.000000000
1.05 2.268496358 2.269703943 2.270043628 2.270158103
1.10 2.582897367 2.585985695 2.586855275 2.587150838
1.15 2.954995034 2.960992388 2.962683751 2.963263785
1.20 3.400872342 3.411384294 3.414355862 3.415384615
1.25 3.943047906 3.960651794 3.965644965 3.967391304
1.30 4.614039436 4.643018510 4.651277424 4.654198473
1.35 5.462568051 5.510357362 5.524069547 5.528980892
1.40 6.564985580 6.645224236 6.668472955 6.676923077
1.45 8.047824947 8.187384679 8.228413044 8.243593315
1.50 10.13 6329642 10.393419 681 10.470731411 10.500000000
3.2.28.
x h D 0:1 h D 0:05 h D 0:025 “Exact"
0.0 1.0000 00000 1.000000000 1.000000000 1.000000000
0.1 0.9841 42840 0.984133302 0.984130961 0.984130189
0.2 0.9650 66124 0.965044455 0.965039117 0.965037353
0.3 0.9426 48578 0.942611457 0.942602279 0.942599241
0.4 0.9167 05578 0.916648569 0.916634423 0.916629732
0.5 0.8869 70525 0.886887464 0.886866778 0.886859904
0.6 0.8530 66054 0.852948011 0.852918497 0.852908668
0.7 0.8144 58249 0.814291679 0.814249848 0.814235883
0.8 0.7703 80571 0.770143777 0.770083998 0.770063987
0.9 0.7196 99643 0.719355385 0.719267905 0.719238519
1.0 0.6606 58411 0.660136630 0.660002840 0.659957689
3.2.30.
x h D 0:1 h D 0:05 h D 0:025 “Exact"
1.0 0.000000000 0.000000000 0.000000000 0.000000000
1.1 -0.099666667 -0.099665005 -0.099664307 -0.099674132
1.2 -0.197322275 -0.197317894 -0.197316222 -0.197355914
1.3 -0.291033227 -0.291036361 -0.291036258 -0.291123993
1.4 -0.379131069 -0.379160444 -0.379166504 -0.379315647
1.5 -0.460350276 -0.460427667 -0.460445166 -0.460662347
1.6 -0.533897316 -0.534041581 -0.534075026 -0.534359685
1.7 -0.599446325 -0.599668984 -0.599721072 -0.600066382
1.8 -0.657076288 -0.657379719 -0.657450947 -0.657845646
1.9 -0.707175010 -0.707553135 -0.707641993 -0.708072516
2.0 -0.750335016 -0.750775571 -0.750879100 -0.751331499
3.2.32. (a) Let x
i
D a C ih, i D 0; 1; : : : ; n. If y is the solution of the initial value problem
y
0
D f .x/, y.a/ D 0, then y.b/ D
R
b
a
f .x/ dx. The improved Euler method yields y
iC1
D y
i
C
:5h .f .a C ih/ C f .a C .i C 1/h//, i D 0; 1; : : : ; n 1, where y
0
D a and y
n
is an approxi mation to
Z
b
a
f .x/ dx. But
y
n
D
n1
X
iD0
.y
iC1
y
i
/ D :5h .f .a/ C f .b// C h
n1
X
iD1
f .a C ih/:
(c) The local truncation error is a multiple of y
000
. Qx
i
/ D f
00
. Qx
i
/, where x
i
< Qx
i
< x
iC1
. Therefore,
the quadrature formula is exact if f is a polynomial of degree < 2.
(d) Let E.f / D
Z
b
a
f .x/ dx y
n
. Not e that E is linear. If f is a polynomial of degree 2, then
34 Chapter 3
Numerical Methods
f .x/ D f
0
.x/ C K.x a/
2
where deg.f
0
/ 1. Since E.f
0
/ D 0 from (c) and
E..x a/
2
/ D
.b a/
3
3
.b a/
2
h
2
h
3
n1
X
iD1
i
2
D h
3
n
3
3
n
2
2
n.n 1/.2n 1/
6
D
nh
3
6
D
.b a/h
2
6
;
E.f / D
K.b a/h
2
6
; th erefore the error is pro portion al to h
2
.
3.3 THE RUNGE–KUTTA METHOD
3.3.2. y
1
D 1:221551366; y
2
D 1:492920208
3.3.4. y
1
D 2:961316248; y
2
D 2:920128958.
3.3.6.
x h D 0 :1 h D 0 :05 h D 0 :025 Exact
0.0 2.000000000 2.000000000 2.000000000 2.000000000
0.1 2.232752507 2.232649573 2.232643327 2.232642918
0.2 2.774582759 2.774366625 2.774353431 2.774352565
0.3 3.727068686 3.726710028 3.726688030 3.726686582
0.4 5.254817388 5.254263005 5.254228886 5.254226636
0.5 7.613077020 7.612241222 7.612189662 7.612186259
0.6 11.189 806778 11.188557546 11.188480365 11.188475269
0.7 16.569 088310 16.567225975 16.567110808 16.567103199
0.8 24.626 206255 24.623431201 24.623259496 24.623248150
0.9 36.669 848687 36.665712858 36.665456874 36.665439956
1.0 54.654 509699 54.648344019 54.647962328 54.647937102
3.3.8.
x h D 0:05 h D 0:025 h D 0:0125 Exact
1.00 2.000000000 2.000000000 2.000000000 2.000000000
1.05 2.270153785 2.270157806 2.270158083 2.270158103
1.10 2.587139846 2.587150083 2.587150789 2.587150838
1.15 2.963242415 2.963262317 2.963263689 2.963263785
1.20 3.415346864 3.415382020 3.415384445 3.415384615
1.25 3.967327077 3.967386886 3.967391015 3.967391304
1.30 4.654089950 4.654191000 4.654197983 4.654198473
1.35 5.528794615 5.528968045 5.528980049 5.528980892
1.40 6.676590929 6.676900116 6.676921569 6.676923077
1.45 8.242960669 8.243549415 8.243590428 8.243593315
1.50 10.49 8658198 10.499906 266 10.499993820 10.500000000
3.3.10.
x h D 0:1 h D 0:05 h D 0:025 h D 0:1 h D 0:05 h D 0:025
1.0 1.0000 00000 1.000000000 1.000000000 0.000000000 0.0000000000 0.00000000000
1.1 0.9237 30622 0.923730677 0.923730681 -0.000000608 -0.0000000389 -0.00000000245
1.2 0.8544 43253 0.854443324 0.854443328 -0.000000819 -0.0000000529 -0.00000000335
1.3 0.7915 81155 0.791581218 0.791581222 -0.000000753 -0.0000000495 -0.00000000316
1.4 0.7346 80497 0.734680538 0.734680541 -0.000000523 -0.0000000359 -0.00000000233
1.5 0.6832 88034 0.683288051 0.683288052 -0.000000224 -0.0000000178 -0.00000000122
1.6 0.6369 37046 0.636937040 0.636937040 0.000000079 0.0000000006 -0.00000000009
1.7 0.5951 53053 0.595153029 0.595153028 0.000000351 0.0000000171 0.00000000093
1.8 0.5574 69558 0.557469522 0.557469520 0.000000578 0.0000000309 0.00000000179
1.9 0.5234 43129 0.523443084 0.523443081 0.000000760 0.0000000421 0.00000000248
2.0 0.4926 63789 0.492663738 0.492663736 0.000000902 0.0000000508 0.00000000302
Approximate Solutions Residuals
Section 3.3
The Ru nge–Kutta Method
35
3.3.12.
x h D 0:1 h D 0:05 h D 0:025 “Exact"
1.0 0.000000000 0.000000000 0.000000000 0.000000000
1.1 -0.099663901 -0.099663994 -0.099664000 -0.099664000
1.2 -0.197315322 -0.197315504 -0.197315516 -0.197315517
1.3 -0.291035700 -0.291035983 -0.291036001 -0.291036003
1.4 -0.379167790 -0.379168194 -0.379168220 -0.379168221
1.5 -0.460450005 -0.460450552 -0.460450587 -0.460450590
1.6 -0.534084875 -0.534085579 -0.534085623 -0.534085626
1.7 -0.599736802 -0.599737663 -0.599737717 -0.599737720
1.8 -0.657472724 -0.657473726 -0.657473788 -0.657473792
1.9 -0.707669346 -0.707670460 -0.707670529 -0.707670533
2.0 -0.750911103 -0.750912294 -0.750912367 -0.750912371
3.3.14.
Runge–Kutta method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
2.0 2.000000000 2.000000000 2.000000000 2.000000000
2.1 2.464113907 2.464119185 2.464119544 2.464119569
2.2 3.029389360 3.029402271 3.029403150 3.029403212
2.3 3.718384519 3.718408199 3.718409812 3.718409925
2.4 4.558632516 4.558671116 4.558673746 4.558673929
2.5 5.583745479 5.583804456 5.583808474 5.583808754
2.6 6.834762639 6.834849135 6.834855028 6.834855438
2.7 8.361796619 8.361919939 8.361928340 8.361928926
2.8 10.226 043942 10.226216159 10.226227891 10.226228709
2.9 12.502 240429 12.502477158 12.502493285 12.502494409
3.0 15.281 660036 15.281981407 15.282003300 15.282004826
Runge–Kutta semilinear method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
2.0 2.000000000 2.000000000 2.000000000 2.000000000
2.1 2.464119623 2.464119573 2.464119570 2.464119569
2.2 3.029403325 3.029403219 3.029403212 3.029403212
2.3 3.718410105 3.718409936 3.718409925 3.718409925
2.4 4.558674188 4.558673945 4.558673930 4.558673929
2.5 5.583809105 5.583808776 5.583808755 5.583808754
2.6 6.834855899 6.834855467 6.834855440 6.834855438
2.7 8.361929516 8.361928963 8.361928928 8.361928926
2.8 10.226229456 10.226228756 10.226228712 10.226228709
2.9 12.502495345 12.502494468 12.502494413 12.502494409
3.0 15.282005990 15.282004899 15.282004831 15.282004826
3.3.16.
Runge–Kutta method
x h D 0:2 h D 0:1 h D 0:05 “Exact"
1.0 2.0000 00000 2.000000000 2.000000000 2.000000000
1.2 1.8016 36785 1.801636775 1.801636774 1.801636774
1.4 1.6501 02633 1.650102617 1.650102616 1.650102616
1.6 1.5269 35904 1.526935886 1.526935885 1.526935885
1.8 1.4220 74302 1.422074284 1.422074283 1.422074283
2.0 1.3296 64970 1.329664954 1.329664953 1.329664953
2.2 1.2461 55357 1.246155345 1.246155344 1.246155344
2.4 1.1693 34355 1.169334347 1.169334346 1.169334346
2.6 1.0978 12074 1.097812070 1.097812069 1.097812069
2.8 1.0307 19113 1.030719114 1.030719114 1.030719114
3.0 0.9675 23147 0.967523152 0.967523153 0.967523153
36 Chapter 3
Numerical Methods
Runge–Kutta semilinear method
x h D 0 :2 h D 0:1 h D 0:05 “E xact"
1.0 2.000000000 2.000000000 2.000000000 2.00000 0000
1.2 1.801636785 1.801636775 1.801636774 1.80163 6774
1.4 1.650102633 1.650102617 1.650102616 1.65010 2616
1.6 1.526935904 1.526935886 1.526935885 1.52693 5885
1.8 1.422074302 1.422074284 1.422074283 1.42207 4283
2.0 1.329664970 1.329664954 1.329664953 1.32966 4953
2.2 1.246155357 1.246155345 1.246155344 1.24615 5344
2.4 1.169334355 1.169334347 1.169334346 1.16933 4346
2.6 1.097812074 1.097812070 1.097812069 1.09781 2069
2.8 1.030719113 1.030719114 1.030719114 1.03071 9114
3.0 0.967523147 0.967523152 0.967523153 0.96752 3153
3.3.18.
Runge–Kutta method
x h D 0:2 h D 0:1 h D 0:05 “Exact"
0.0 1.0000 00000 1.000000000 1.000000000 1.000000000
0.2 1.1715 15610 1.171515156 1.171515152 1.171515153
0.4 1.2633 65845 1.263370556 1.263370869 1.263370891
0.6 1.2712 38957 1.271250529 1.271251232 1.271251278
0.8 1.2188 85528 1.218900353 1.218901230 1.218901287
1.0 1.1353 46772 1.135361174 1.135362016 1.135362070
1.2 1.0420 49558 1.042061864 1.042062579 1.042062625
1.4 0.9511 81964 0.951191920 0.951192495 0.951192532
1.6 0.8683 72923 0.868380842 0.868381298 0.868381328
1.8 0.7955 11927 0.795518241 0.795518603 0.795518627
2.0 0.7326 33229 0.732638318 0.732638609 0.732638628
Runge–Kutta semilinear method
x h D 0 :2 h D 0:1 h D 0:05 “E xact"
0.0 1.000000000 1.000000000 1.000000000 1.00000 0000
0.2 1.171517316 1.171515284 1.171515161 1.17151 5153
0.4 1.263374485 1.263371110 1.263370904 1.26337 0891
0.6 1.271254636 1.271251485 1.271251291 1.27125 1278
0.8 1.218903802 1.218901442 1.218901297 1.21890 1287
1.0 1.135363869 1.135362181 1.135362077 1.13536 2070
1.2 1.042063952 1.042062706 1.042062630 1.04206 2625
1.4 0.951193560 0.951192595 0.951192536 0.95119 2532
1.6 0.868382157 0.868381378 0.868381331 0.86838 1328
1.8 0.795519315 0.795518669 0.795518629 0.79551 8627
2.0 0.732639212 0.732638663 0.732638630 0.73263 8628
3.3.20.
Runge–Kutta method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
0.0 1.0000 00000 1.000000000 1.000000000 1.000000000
0.1 0.7464 30962 0.746418992 0.746418376 0.746418339
0.2 0.5617 61987 0.561743921 0.561742975 0.561742917
0.3 0.4237 46057 0.423725371 0.423724274 0.423724207
0.4 0.3194 89811 0.319468612 0.319467478 0.319467408
0.5 0.2404 86460 0.240466046 0.240464947 0.240464879
0.6 0.1806 46105 0.180627244 0.180626225 0.180626161
0.7 0.1354 12569 0.135395665 0.135394749 0.135394692
0.8 0.1013 08709 0.101293911 0.101293107 0.101293057
0.9 0.0756 63769 0.075651059 0.075650367 0.075650324
1.0 0.0564 26886 0.056416137 0.056415552 0.056415515
Section 3.3
The Ru nge–Kutta Method
37
Runge–Kutta semilinear method
x h D 0 :1 h D 0:05 h D 0:025 Exact"
0.0 1.000000000 1.000000000 1.000000000 1.00000 0000
0.1 0.746416306 0.746418217 0.746418332 0.74641 8339
0.2 0.561740647 0.561742780 0.561742908 0.56174 2917
0.3 0.423722193 0.423724084 0.423724199 0.42372 4207
0.4 0.319465760 0.319467308 0.319467402 0.31946 7408
0.5 0.240463579 0.240464800 0.240464874 0.24046 4879
0.6 0.180625156 0.180626100 0.180626158 0.18062 6161
0.7 0.135393924 0.135394645 0.135394689 0.13539 4692
0.8 0.101292474 0.101293021 0.101293055 0.10129 3057
0.9 0.075649884 0.075650297 0.075650322 0.07565 0324
1.0 0.056415185 0.056415495 0.056415514 0.05641 5515
3.3.22.
Runge–Kutta method
x h D 0:1 h D 0:05 h D 0:025 “Exact"
2.0 1.0000 00000 1.000000000 1.000000000 1.000000000
2.1 1.0089 12398 1.008900636 1.008900025 1.008899988
2.2 1.0317 40789 1.031724368 1.031723520 1.031723469
2.3 1.0637 81819 1.063765150 1.063764295 1.063764243
2.4 1.1016 30085 1.101615517 1.101614774 1.101614730
2.5 1.1429 15917 1.142904393 1.142903811 1.142903776
2.6 1.1860 47678 1.186039295 1.186038876 1.186038851
2.7 1.2299 91054 1.229985469 1.229985194 1.229985178
2.8 1.2740 95992 1.274092692 1.274092535 1.274092525
2.9 1.3179 69153 1.317967605 1.317967537 1.317967533
3.0 1.3613 84082 1.361383812 1.361383809 1.361383810
Runge–Kutta semilinear method
x h D 0 :1 h D 0:05 h D 0:025 Exact"
2.0 1.000000000 1.000000000 1.000000000 1.00000 0000
2.1 1.008913934 1.008900843 1.008900041 1.00889 9988
2.2 1.031748526 1.031725001 1.031723564 1.03172 3469
2.3 1.063798300 1.063766321 1.063764371 1.06376 4243
2.4 1.101656264 1.101617259 1.101614886 1.10161 4730
2.5 1.142951721 1.142906691 1.142903955 1.14290 3776
2.6 1.186092475 1.186042105 1.186039051 1.18603 8851
2.7 1.230043983 1.229988742 1.229985397 1.22998 5178
2.8 1.274156172 1.274096377 1.274092762 1.27409 2525
2.9 1.318035787 1.317971658 1.317967787 1.31796 7533
3.0 1.361456502 1.361388196 1.361384079 1.36138 3810
3.3.24.
x h D :1 h D :0 5 h D :025 Exact
1.00 0.142854841 0.142857001 0.142857134 0.142857143
1.10 0.053340745 0.053341989 0.053342066 0.053342071
1.20 -0.046154629 -0.046153 895 -0.046 153849 -0.046153846
1.30 -0.153363206 -0.153362 764 -0.153 362736 -0.153362734
1.40 -0.266397049 -0.266396 779 -0.266 396762 -0.266396761
1.50 -0.383721107 -0.383720 941 -0.383 720931 -0.383720930
1.60 -0.504109696 -0.504109 596 -0.504 109589 -0.504109589
1.70 -0.626598326 -0.626598 268 -0.626 598264 -0.626598264
1.80 -0.750437351 -0.750437 320 -0.750 437318 -0.750437318
1.90 -0.875050587 -0.875050 574 -0.875 050573 -0.875050573
2.00 -1.000000000 -1.000000 000 -1.000 000000 -1.000000000
38 Chapter 3
Numerical Methods
3.3.26.
x h D :1 h D :0 5 h D :025 Exact
0.50 -8.954103230 -8.954063 245 -8.954 060698 -8.954060528
0.60 -5.059648314 -5.059633 293 -5.059 632341 -5.059632277
0.70 -2.516755942 -2.516749 850 -2.516 749465 -2.516749439
0.80 -0.752508672 -0.752506 238 -0.752 506084 -0.752506074
0.90 0.530528482 0.530529270 0.530529319 0.530529323
1.00 1.500000000 1.500000000 1.500000000 1.500000000
1.10 2.256519743 2.256519352 2.256519328 2.256519326
1.20 2.863543039 2.863542454 2.863542417 2.863542415
1.30 3.362731379 3.362730700 3.362730658 3.362730655
1.40 3.782361948 3.782361231 3.782361186 3.782361183
1.50 4.142171279 4.142170553 4.142170508 4.142170505
3.3.28. (a) Let x
i
D a C ih, i D 0; 1; : : : ; n. If y is the solution of the initial value problem
y
0
D f .x/, y.a/ D 0, then y.b/ D
R
b
a
f .x/ dx. The Runge-Kutta method y ields y
iC1
D y
i
C
h
6
.f .a C ih/ C 4f .a C .2i C 1/h=2/ Cf .a C .i C 1/h//, i D 0; 1; : : : ; n 1, where y
0
D a and y
n
is an approximation to
Z
b
a
f .x/ dx. But
y
n
D
n1
X
iD0
.y
iC1
y
i
/ D
h
6
.f .a/ C f .b// C
h
3
n1
X
iD1
f .a C ih/ C
2h
3
n
X
iD1
f .a C .2i 1/h=2/ :
(c) The local truncation error is a multiple of y
.5/
. Qx
i
/ D f
.4/
. Qx
i
/, where x
i
< Qx
i
< x
iC1
. Therefore,
the quadrature formula is exact if f is a polynomial of degree < 4.
(d) Let E.f / D
Z
b
a
f .x/ dx y
n
. Note that E is linear. If f is a polynomial of degree 4, then
f .x/ D f
0
.x/ C K.x a/
4
where deg.f
0
/ 3 and K is constant. Since E.f
0
/ D 0 from (c) and
E..x a/
4
/ D
.b a/
5
5
.b a/
4
h
6
h
5
3
n1
X
iD1
i
4
2h
5
3
n
X
iD1
.i 1=2/
4
D h
5
n
5
5
n
4
6
n
5
15
n
4
6
C
n
3
9
n
90
2n
5
15
n
3
9
C
7n
360

D
nh
5
120
D
.b a/h
4
120
;
E.f / D
.b a/h
4
120
; thus, the error is proportional to h
4
.
CHAPTER 4
Applications of First Order Equations
4.1 GROWTH AND DECAY
4.1.2. k D ln 2 and D 2 ) k D
ln 2
2
; Q.t/ D Q
0
e
t ln 2=2
; if Q.T / D
Q
0
10
, then
Q
0
10
D
Q
0
e
T ln 2=2
; ln 10 D
T ln 2
2
; T D
2 ln 10
ln 2
days.
4.1.4. Let t
1
be the elapsed time since the tree died. Since p.t/ D e
.t ln 2/
, it follows that p
1
D
p
0
e
.t
1
ln 2/=
, so ln
p
1
p
0
D
t
1
ln 2 and t
1
D
ln.p
0
=p
1
/
ln 2
.
4.1.6. Q D Q
0
e
kt
; Q
1
D Q
0
e
kt
1
; Q
2
D Q
0
e
kt
2
;
Q
2
Q
1
D e
k.t
2
t
1
/
; ln
Q
1
Q
2
D k.t
2
t
1
/;
k D
1
t
2
t
1
ln
Q
1
Q
2
.
4.1.8. Q
0
D :06Q; Q.0/ D Q
0
; Q D Q
0
e
:06t
. We must find such that Q./ D 2Q
0
; that is,
Q
0
e
:06
D 2Q
0
, so :06 D ln 2 and D
ln 2
:06
D
50 ln2
3
yr.
4.1.10. (a) If T is the time to triple the value, then Q.T / D Q
0
e
:05T
D 3Q
0
, so e
:05T
D 3. Therefore,
:05T D ln 3 and T D 20 ln 3.
(b) If Q.10/ D 100000, then Q
0
e
:5
D 100000, so Q
0
D 100000e
:5
4.1.12. Q
0
D
Q
2
2
; Q.0/ D 50;
Q
0
Q
2
D
1
2
;
1
Q
D
t
2
C c; Q.0/ D 50 ) c D
1
50
;
1
Q
D
t
2
C
1
50
D
1 C 25t
50
; Q D
50
1 C 25t
. Now Q.T / D 25 ) 1 C25T D 2 ) 25T D 1 ) T D
1
25
years.
4.1.14. Since D 1500, k D
ln 2
1500
; hence Q D Q
0
e
.t ln 2/=1500
. If Q.t
1
/ D
3Q
0
4
, then e
.t
1
ln 2/=1500
D
3
4
; t
1
ln 2
1500
D ln
3
4
D ln
4
3
; t
1
D 1500
ln
4
3
ln 2
. Finally, Q.2000/ D Q
0
e
4
3
ln 2
D 2
4=3
Q
0
.
39
40 Chapter 4
Applications of First Order Equations
4.1.16. (A) S
0
D 1
S
10
; S.0/ D 20. Rewrite the differential equation in (A) as (B) S
0
C
S
10
D 1. Since
S
1
D e
t=10
is a solution of the complementary equation, the so lutions of (B) are given by S D ue
t=10
,
where u
0
e
t=10
D 1. Therefore, u
0
D e
t=10
; u D 10e
t=10
C c; S D 10 C ce
t=10
. Now S.0/ D 20 )
c D 10, so S D 10 C 10e
t=10
and lim
t!1
S.t/ D 10 g.
4.1.18. (A) V
0
D 750 C
V
20
; V .0/ D 25000. Rewrite the differential equatio n in (A) as (B) V
0
V
20
D 750. Since V
1
D e
t=20
is a solution of the complementary equation, the solutions of (B) are
given by V D ue
t=20
, wher e u
0
e
t=20
D 750. Therefore, u
0
D 750e
t=20
; u D 15000e
t=20
C c;
V D 15000 C ce
t=20
; V .0/ D 25000 ) c D 10000. Therefore, V D 15000 C10000e
t=20
.
4.1.20. p
0
D
p
2
p
2
8
D
1
8
p.p4/;
p
0
p.p 4/
D
1
8
;
1
4
1
p 4
1
p
p
0
D
1
8
;
1
p 4
1
p
p
0
D
1
2
;
ˇ
ˇ
ˇ
ˇ
p 4
p
D
t
2
C k;
p 4
p
D ce
t=2
; p.0/ D 100 ) c D
24
25
;
p 4
p
D
24
25
e
t=2
; p 4 D
24
25
pe
t=2
; p
1
24
25
e
t=2
D 4; p D
4
1
24
25
e
t=2
D
100
24 24e
t=2
.
4.1.22. (a)P
0
D rP 12M .
(b) P D ue
rt
; u
0
e
rt
D 12M ; u
0
D 12Me
rt
; u D
12M
r
e
rt
C c; P D
12M
r
C ce
rt
; P .0/ D
P
0
) c D P
0
12M
r
; P D
12M
r
.1 e
rt
/ C P
0
e
rt
.
(c) Since P .N / D 0, the answer to (b) implies that M D
rP
0
12.1 e
rN
/
4.1.24. The researchers salary is the solution of the initial value problem S
0
D aS; S.0/ D S
0
.
Therefore, S D S
0
e
at
. If P D P .t/ is the value of the trust fund, then P
0
D S
0
e
at
C rP , or
P
0
rP D S
0
e
at
. Therefore, (A) P D ue
rt
, wher e u
0
e
rt
D S
0
e
at
, so (B) u
0
D S
0
e
.ar/t
. If
a ¤ r , then (B) implies that u D
S
0
r a
e
.ar/t
C c, so (A) implies that P D
S
0
r a
e
at
C ce
rt
. Now
P.0/ D P
0
) c D P
0
S
0
r a
; therefore P D
S
0
r a
e
at
C
P
0
S
0
r a
e
rt
. We must choose
P
0
so th at P .T / D 0; that is, P D
S
0
r a
e
aT
C
P
0
S
0
r a
e
rT
D 0. Solving this for P
0
yields
P
0
D
S
0
.1 e
.ar/T
/
r a
. If a D r, then (B) becomes u
0
D S
0
, so u D S
0
t C c and (A) implies th at
P D .S
0
t C c/e
rt
. Now P .0/ D P
0
) c D P
0
; th erefore P D .S
0
t C P
0
/e
rt
. To make P .T / D 0
we must take P
0
D S
0
T .
4.1.26. Q
0
D
at
1 C btQ
2
kQ; lim
t!1
Q.t/ D .a=bk/
1=3
.
4.2 COOLING AND MIXING
4.2.2. Since T
0
D 100 and T
M
D 10, T D 10 C 110e
kt
. Now T .1/ D 80 ) 80 D 10 C110e
k
,
so e
k
D
9
11
and k D ln
11
9
. Therefore, T D 10 C 110e
t ln
11
9
.
4.2.4. Let T be the thermometer reading. Since T
0
D 212 and T
M
D 70, T D 70 C 142e
kt
. N ow
T .2/ D 125 ) 125 D 70 C 142e
2k
, so e
2k
D
55
142
and k D
1
2
ln
142
55
. Therefore, (A) T D
Section 4.2
Cooling and Mixing
41
70 C 142e
t
2
ln
142
55
.
(a) T .2/ D 70 C 142e
2ln
142
55
D 70 C 142
55
142
2
91:30
ı
F.
(b) Let be the time when T ./ D 72, so 72 D 70 C 142e
2
ln
142
55
, or e
2
ln
142
55
D
1
71
. Therefore,
D 2
ln 71
ln
142
55
8:99 min.
(c) Since (A) implies that T > 70 for all t > 0, the thermometer will never read 69
ı
F.
4.2.6. Since T
M
D 20, T D 20 C .T
0
20/e
kt
. Now T
0
5 D 20 C .T
0
20/e
4k
and T
0
7 D
20 C.T
0
20/e
8k
. Therefore,
T
0
25
T
0
20
D e
4k
and
T
0
27
T
0
20
D e
8k
, so
T
0
27
T
0
20
D
T
0
25
T
0
20
2
,
which implies that .T
0
20/.T
0
27/ D .T
0
25/
2
, or T
2
0
47T
0
C 540 D T
2
0
50T
0
C 625; hence
3T
0
D 85 and T
0
D .85=3/
ı
C .
4.2.8. Q
0
D 3
3
40
Q; Q.0/ D 0. Rewrite the differential equation as (A) Q
0
C
3
40
Q D 3. Since
Q
1
D e
3t=40
is a solution of the complementary equation, the solutions of (A) are given by Q D
ue
3t=40
where u
0
e
3t=40
D 3. Therefore,u
0
D 3e
3t=40
, u D 40e
3t=40
C c, and Q D 40 C ce
3t=40
.
Now Q.0/ D 0 ) c D 40, so Q D 40.1 e
3t=40
/.
4.2.10. Q
0
D
3
2
Q
20
; Q.0/ D 10. Rewrite the differential equation as (A) Q
0
C
Q
20
D
3
2
. Since
Q
1
D e
t=20
is a solution of the complementary equation, the solutio ns o f (A) are given by Q D ue
t=20
where u
0
e
t=20
D
3
2
. Therefore,u
0
D
3
2
e
t=20
, u D 30e
t=20
C c, and Q D 30 C ce
t=20
. Now
Q.0/ D 10 ) c D 20, so Q D 30 20e
t=20
and K D
Q
100
D :3 :2e
t=20
.
4.2.12. Q
0
D 10
Q
5
, or (A) Q
0
C
Q
5
D 10. Since Q
1
D e
t=5
is a solution of the complementary
equation, the solutions of (A) are given by Q D ue
t=5
where u
0
e
t=5
D 10. Therefore,u
0
D 10e
t=5
,
u D 50e
t=10
C c, and Q D 50 C ce
t=5
. Since lim
t!1
Q.t/ D 50, the mininum capacity is 50 gallons.
4.2.14. Since there are 2t C 600 gallons of mixture in the tank at time t and mixture is bein g drained
at 4 gallons/min, Q
0
D 3
2
t C 300
Q; Q.0/ D 40. Rewrite the di fferential equation as (A) Q
0
C
2
t C 300
Q D 3. Since Q
1
D
1
.t C 300/
2
is a solution of the complementary equation, the solutions
of (A) are given b y Q D
u
.t C 300/
2
where
u
0
.t C 300/
2
D 3. Therefore, u
0
D 3.t C 300/
2
, u D
.t C 300/
3
C c, and Q D t C 300 C
c
.t C 300/
2
. Now Q.0/ D 40 ) c D 234 10
5
, so Q D
t C 300
234 10
5
.t C 300/
2
; 0 t 300.
4.2.16. (a ) S
0
D k
m
.S T
m
/; S.0/ D 0, so (A) S D T
m
C .S
0
T
m
/e
k
m
t
. T
0
D k.T S/ D
k
T T
m
.S
0
T
m
/e
k
m
t
, from (A). Therefore,T
0
CkT D kT
m
Ck.S
0
T
m
/e
k
m
t
; T D ue
kt
;
(B) u
0
D kT
m
e
kt
C k.S
0
T
m
/e
.kk
m
/t
; u D T
m
e
kt
C
k
k k
m
.S
0
T
m
/e
.kk
m
/t
Cc; T .0/ D T
0
)
c D T
0
T
m
k
k k
m
.S
0
T
m
/; u D T
m
e
kt
C
k
k k
m
.S
0
T
m
/e
.kk
m
/t
CT
0
T
m
k
k k
m
.S
0
T
m
/;
42 Chapter 4
Applications of First Order Equations
T D T
m
C .T
0
T
m
/e
kt
C
k.S
0
T
m
/
.k k
m
/
e
k
m
t
e
kt
.
(b) If k D k
m
(B) becomes (B) u
0
D kT
m
e
kt
Ck.S
0
T
m
/; u D T
m
e
kt
Ck.S
0
T
m
/t C c; T .0/ D
T
0
) c D T
0
T
m
; u D T
m
e
kt
Ck.S
0
T
m
/t C.T
0
T
m
/; T D T
m
Ck.S
0
T
m
/te
kt
C.T
0
T
m
/e
kt
.
(c) lim
t!1
T .t/ D lim
t!1
S.t/ D T
m
in either case.
4.2.18. V
0
D aV bV
2
D bV .V b=a/;
V
0
V .V a=b/
D b;
1
V a=b
1
V
V
0
D a;
ln
ˇ
ˇ
ˇ
ˇ
V a=b
V
ˇ
ˇ
ˇ
ˇ
D at C k; (A)
V a=b
V
D ce
at
; (B) V D
a
b
1
1 ce
at
. Since V .0/ D V
0
, (A)
) c D
V
0
a=b
V
0
. Substituting this into (B) yi el ds V D
a
b
V
0
V
0
.V
0
a=b/ e
at
so l im
t!1
V .t/ D
a=b
4.2.20. If Q
n
.t/ is the number of pounds of salt in T
n
at time t, then Q
0
nC1
C
r
W
Q
nC1
D rc
n
.t/; n D
0; 1; : : : , wher e c
0
.t/ c. Therefore,Q
nC1
D u
nC1
e
rt=w
; (A) u
0
nC1
D re
rt=W
c
n
.t/. In particular,
with n D 0, u
1
D cW.e
rt=W
1/, so Q
1
D cW.1 e
rt=W
/ and c
1
D c.1 e
rt=W
/. We will shown
by induction that c
n
D c
0
@
1 e
rt=W
n1
X
j D0
1
j Š
rt
W
j
1
A
. This is true for n D 1; if it is true for a given n,
then, from (A),
u
0
nC1
D c re
rt=W
0
@
1 e
rt=W
n1
X
j D0
1
j Š
rt
W
j
1
A
D cr e
rt=W
cr
n1
X
j D0
1
j Š
rt
W
j
;
so (since Q
nC1
.0/ D 0),
u
nC1
D cW.e
rt=W
1/ c
n1
X
j D0
1
.j C 1/Š
r
j C1
W
j
t
j C1
:
Therefore,
c
nC1
D
1
W
u
nC1
e
rt=W
D c
0
@
1 e
rt=W
n
X
j D0
1
j Š
rt
W
j
1
A
;
which completes the induct ion. From this, lim
t!1
c
n
.t/ D c.
4.2.22. Since the incoming solution cont ai ns 1/2 lb of salt per gallo n and there are always 600 gal-
lons i n the tank, we conclude in tuitively that lim
t!1
Q.t/ D 300. To verify this rigorously, note
that Q
1
.t/ D exp
1
150
Z
t
0
a./ d
is a solution of the complementary equation, (A) Q
1
.0/ D 1,
and (B) lim
t!1
Q
1
.t/ D 0 (since lim
t!1
a.t/ D 1). Therefore,Q D Q
1
u; Q
1
u
0
D 2; u
0
D
2
Q
1
; u D Q
0
C 2
Z
t
0
d
Q
1
./
(see (A)), and Q.t/ D Q
0
Q
1
.t/ C 2Q
1
.t/
Z
t
0
d
Q
1
./
. From (B),
lim
t!1
Q.t/ D 2 li m
t!1
Q
1
.t/
Z
t
0
d
Q
1
./
, a 0 1 indeterminate form. By L’Hospital’s rule, lim
t!1
Q.t/ D
2 lim
t!1
1
Q
1
.t/
Q
0
1
.t/
Q
2
1
.t/
D 2 lim
t!1
Q
1
.t/
Q
0
1
.t/
D 300.
vspace*10pt
Section 4.3
Elementary Mechanics
43
4.3 ELEMENTARY MECHANICS
4.3.2. The firefighter’s mass is m D
192
32
D 6 sl, so 6v
0
D 192 kv, or (A) v
0
C
k
6
v D 32.
Since v
1
D e
kt= 6
is a solution of the complementary equat ion, the solutions of (A) are v D ue
kt= 6
where u
0
e
kt= 6
D 32. Therefore,u
0
D 32e
kt=6
; u D
192
k
e
kt=6
C c; v D
192
k
C ce
kt= 6
. Now
v.0/ D 0 ) c D
192
k
. Therefore,v D
192
k
.1 e
kt= 6
/ and lim
t!1
v.t/ D
192
k
D 16 ft/s, so
k D 12 lb-s/ft and v D 16.1 e
2t
/.
4.3.3. m D
64000
32
D 2000, so 2000v
0
D 500002000v, or (A) v
0
Cv D 25. Since v
1
D e
t
is a solution
of the complementary equation, the solutions of (A) are v D ue
t
where u
0
e
t
D 25. Therefore,u
0
D
25e
t
; u D 25e
t
C c; v D 25 C ce
t
. Now v.0/ D 0 ) c D 25. Therefore,v D 25.1 e
t
/ and
lim
t!1
v.t/ D 25 ft/s.
4.3.4. 20v
0
D 10
1
2
v, or (A) v
0
C
1
20
v D
1
2
. Since v
1
D e
t=40
is a solution of the compl ementary
equation, the solut ions of (A) are v D ue
t=40
where u
0
e
t=40
D
1
2
. Therefore,u
0
D
e
t=40
2
; u D
20e
t=40
C c; v D 20 C ce
t=40
. Now v.0/ D 7 ) c D 27. Therefore,v D 20 27e
t=40
.
4.3.6. m D
3200
32
D 100 sl. The component of the gravitational force in the dir ection of motion is
3200 cos.=3/ D 1600 lb. Therefore, 100v
0
D 1600Cv
2
. Separating variables yields
v
0
.v 40/.v C 40/
D
1
100
, or
1
v 40
1
v C 40
D
4
5
. Therefore, ln
ˇ
ˇ
ˇ
ˇ
v 40
v C 40
ˇ
ˇ
ˇ
ˇ
D
4t
5
Ck and
v 40
v C 40
D ce
4t=5
. Now v.0/ D
64 ) c D
13
3
; th erefore
v 40
v C 40
D
13e
4t=5
3
, so v D
40.3 C 13e
4t=5
/
3 13e
4t=5
, o r v D
40.13 C 3e
4t=5
/
13 3e
4t=5
.
4.3.8. Fr om Example 4.3.1, (A) v D
mg
k
C
v
0
C
mg
k
e
kt=m
. Integrat ing this yields (B) y D
mgt
k
m
k
v
0
C
mg
k
e
kt=m
C c. N ow y.0/ D y
0
) c D y
0
C
m
k
v
0
C
mg
k
. Substituting this
into (B) yields
y D
mgt
k
m
k
v
0
C
mg
k
e
kt=m
C y
0
C
m
k
v
0
C
mg
k
D y
0
C
m
k
v
0
gt C
mg
k
v
0
C
mg
k
e
kt=m
D y
0
C
m
k
.v
0
v gt/
where the last equality follows from (A).
4.3.10. m D
256
32
D 8 sl. Since the resisting force is 1 lb when jvj D 4 ft/s, k D
1
16
. Therefore,
8v
0
D 256 C
1
16
v
2
D
1
16
v
2
.64/
2
. Separating variables yields
v
0
.v 64/.v C 64/
D
1
128
, or
1
v 64
1
v C 64
v
0
D 1. Therefore,ln
ˇ
ˇ
ˇ
ˇ
v 64
v C 64
ˇ
ˇ
ˇ
ˇ
D t C k and
v 64
v C 64
D ce
t
. Now v.0/ D 0 ) c D
1; therefore
v 64
v C 64
D e
t
, so v D
64.1 e
t
/
1 C e
t
, or v D
64.1 e
t
/
1 C e
t
. Therefore, lim
t!1
v.t/ D
64.
44 Chapter 4
Applications of First Order Equations
4.3.12. (a) mv
0
D mg kv
2
D mg.1 C
2
v
2
/, where D
s
k
mg
. Therefore,(A)
v
0
1 C
2
v
2
D g.
With the substitution u D v,
Z
dv
1 C
2
v
2
D
1
Z
du
1 C u
2
D
1
tan
1
u D
1
tan
1
.v/. There-
fore,
1
tan
1
.v/ D gt C c. Now v.0/ D v
0
) c D
1
tan
1
.v
0
/, so
1
tan
1
.v/ D gt C
1
tan
1
.v
0
/. Since v.T / D 0, it follows that T D
1
g
tan
1
v
0
D
r
m
kg
tan
1
v
0
s
k
mg
!
.
(b) Replacing t by t T and setting v
0
D 0in the answer to the previou s exercise yields v D
r
mg
k
1 e
2
q
gk
m
.tT /
1 C e
2
q
gk
m
.tT /
.
4.3.14. (a) mv
0
D mg Cf .jvj/; since s D jvj D v, (A) ms
0
D mg f .s/.
(b) Since f is incr easing and lim
t!1
f .s/ mg, mg f .s/ > 0 for all s. This and (A) impl y that s
is an increasing function of t , so either (B) lim
t!1
s.t/ D 1 or (C ) lim
t!1
s.t/ D s < 1. However,
(A) and (C) imply that s
0
.t/ > K D g f .s/=m for all t > 0. Consequently, s.t/ > s
0
C Kt for all
t > 0, which contradicts (C) becau se K > 0.
(c) There is a u nique positive number s
T
such that f .s
T
/ D mg, and s s
T
is a constant solution of
(A). Now sup pose that s.0/ < s
T
. Then Theorem 2.3.1 implies that (D) s.t/ < s
T
for all t > 0, so (A)
implies that s is strictly increasing. This and (D) imply that lim
t!1
s.t/ D s s
T
. If s < s
T
then (A)
implies that s
0
.t/ > K D g f .s/=m. Consequently, s.t/ > s.0/ CKt, which contr adicts (D) because
K > 0. Therefore, s.0/ < s
T
) lim
t!1
s.t/ D s
T
. A similar proof with inequlities reversed shows
that s.0/ > s
T
) lim
t!1
s.t/ D s
T
.
4.3.16. (a) (A) mv
0
D mg C k
p
jvj; since th e magnitude of the resistance is 64 lb when v D 16 ft/s,
4k D 64, so k D 16 lb s
1=2
=ft
1=2
. Since m D 2 and g D 32, (A) becomes 2v
0
D 64 C 16
p
jvj, or
v
0
D 32 C 8
p
jvj.
(b) From Exercise 4.3.14(c), v
T
is the negative number such that 32 C8
p
jv
T
j D 0; thus, v
T
D 16
ft/s.
4.3.18. With h D 0, v
e
D
p
2gR, where R is the radius of th e moo n and g is the acceleration due to
gravity at the moon’s surface. With length in miles, g D
5:31
5280
mi/s
2
, so v
e
D
r
2 5:31 1080
5280
1:47
miles/s.
4.3.20. Suppose that there is a number y
m
such that y.t/ y
m
for all t 0 and let ˛ D
gR
2
.y
m
C R/
2
.
Then
d
2
y
dt
2
˛ for all t 0. Integrating this inequality from t D 0 to t D T > 0 yields v.T / v
0
˛T , or v.T / v
0
˛T , so v.T / < 0 for T >
v
0
˛
. This implies that the vehicle must eventually fall
back to Earth, which contradicts the assumption that it conti nues to climb forever.
4.4 AUTONOMOUS SECOND ORDER EQUATIONS
4.4.1. y D 0 is a stable equilibriu m. The phase plane equivalent is v
dv
dy
Cy
3
D 0, so t he trajectories are
v
2
C
y
4
4
D c.
Section 4.4
Autonomous Second Order Equations
45
4.4.2. y D 0 is an unstable equilibrium. The phase plane equivalent is v
dv
dy
Cy
2
D 0, so the trajectories
are v
2
C
2y
3
3
D c.
4.4.4. y D 0 is a stabl e equilibriu m. The phase plane equivalent is v
dv
dy
C ye
y
D 0, so the trajectories
are v
2
e
y
.y C 1/ D c.
4.4.6. p.y/ D y
3
4y D .y C 2/y.y 2/, so the equilibria are 2; 0; 2. Since
y.y 2/.y C 2/ < 0 if y < 2 or 0 < y < 2;
> 0 if 2 < y < 0 or y > 2;
0 is unstabl e and 2; 2 are stable. The phase plane equivalent i s v
dv
dy
C y
3
4y D 0, so the traject ories
are 2v
2
C y
4
8y
2
D c. Setti ng .y; v/ D .0; 0/ yiel ds c D 0, so the equation of the separatrix is
2v
2
y
4
C 8y
2
D 0.
4.4.8. p.y/ D y.y 2/.y 1/.y C 2/, so the equilibria are 2; 0; 1; 2. Since
y.y 2/.y 1/.y C 2/ > 0 if y < 2 or 0 < y < 1 or y > 2;
< 0 if 2 < y < 0 or 1 < y < 2;
0; 2 are stable and 2; 1 are unstable. The phase plane equivalent is v
dv
dy
Cy.y2/.y1/.yC2/ D 0, so
the trajectories are 30v
2
Cy
2
.12y
3
15y
2
80yC120/ D c. Setting .y; v/ D .2; 0/ and .y; v/ D .1; 0/
yields c D 496 and c D 37 respectively, so the equations of the separatrices are 30v
2
Cy
2
.12y
3
15y
2
80y C 120/ D 496 and 30v
2
C y
2
.12y
3
15y
2
80y C 120/ D 37.
4.4.10. p.y/ D y
3
ay. If a 0, then p.0/ D 0, p.y/ > 0 if y > 0, and p.y/ < 0 if y < 0, so 0 is
stable. If a > 0, then
y
3
ay D y.y
p
a/.y C
p
a/ > 0 if
p
a < y < 0 or y >
p
a;
< 0 if y <
p
a or 0 < y <
p
a;
so
p
a and
p
a are stable and 0 is unstable. We say that a D 0 is a critical value because it separates
the two cases.
4.4.12. p.y/ D y ay
3
. If a 0, then p.0/ D 0, p.y/ > 0 if y > 0, and p.y/ < 0 if y < 0, so 0 is
stable. If a > 0, then
y ay
3
D ay.y 1=
p
a/.y C 1=
p
a/ > 0 if y < 1=
p
a < y < 0 o r 0 < y < 1=
p
a
< 0 if 1=
p
a < y < 0 or y > 1=
p
a;
so
p
a and
p
a are u nstable and 0 is stable. We say that a D 0 is a critical value becau se it separates
the two cases.
4.4.24. (a) Since v
0
D p.y/ k and v.0/ D 0, v kt and theref ore y y
0
C kt
2
=2 for 0 t < T .
(b) Let 0 < < . Supp ose that y is the solution of the initial value problem (A) y
00
C p.y/ D
0; y.0/ D y
0
; y
0
.0/ D 0, where y < y
0
< y C . Now let Y D y y and P .Y / D p.Y C
y/. Then P.0/ D 0 and P .Y / < 0 if 0 < Y . Morover, Y is the solution of Y
00
C p.Y / D
46 Chapter 4
Applications of First Order Equations
0; Y.0/ D Y
0
; Y
00
.0/ D 0, where Y
0
D y
0
y, so 0 < Y
0
< . From (a), Y.t/ for some t > 0.
Therefore,y.t/ > y C for some t > 0, so y is an unstable equilibrium of y
00
C p.y/ D 0.
4.5 APPLICATIONS TO CURVES
4.5.2. Differentiating (A) e
xy
D cy yields (B) .xy
0
C y/e
xy
D cy
0
. From (A), c D
e
xy
y
. Substituting
this into (B) and cancelling e
xy
yields xy
0
C y D
y
0
y
, so y
0
D
y
2
.xy 1/
.
4.5.4. Solving y D x
1=2
Ccx for c yields c D
y
x
x
1=2
, and differen tiating yields 0 D
y
0
x
y
x
2
C
x
3=2
2
,
or xy
0
y D
x
1=2
2
.
4.5.6. Rewrit ing y D x
3
C
c
x
as xy D x
4
C c and differentiating yields xy
0
Cy D 4x
3
.
4.5.8. Rewriting y D e
x
C c.1 C x
2
/ as
y
1 C x
2
D
e
x
1 C x
2
C c and differentiating yields
y
0
1 Cx
2
2xy
.1 C x
2
/
2
D
e
x
1 C x
2
2xe
x
.1 C x
2
/
2
, so .1 Cx
2
/y
0
2xy D .1 x/
2
e
x
.
4.5.10. If ( A ) y D f C cg, then (B) y
0
D f
0
C cg
0
. Mutiplying (A) by g
0
and (B) by g yields (C)
yg
0
D fg
0
Ccgg
0
and (D) y
0
g D f
0
gCcg
0
g, and subtracting (C) from (D) yi elds y
0
gyg
0
D f
0
gfg
0
.
4.5.12. Let .x
0
; y
0
/ be the center and r be the radius of a circle in the family. Since .1; 0/ and .1; 0/ are
on the circle, .x
0
C 1/
2
C y
2
0
D .x
0
1/
2
C y
2
0
, which implies that x
0
D 0. Therefore,the equation of
the circle is (A) x
2
C .y y
0
/
2
D r
2
. Since .1; 0/ is on the circle, r
2
D 1 C y
2
0
. Substituting this int o
(A) shows that the equation of the circle is x
2
Cy
2
2yy
0
D 1, so 2y
0
D
x
2
C y
2
1
y
. Differentiating
y.2x C 2yy
0
/ y
0
.x
2
C y
2
1/ D 0, so y
0
.y
2
x
2
C 1/ C2xy D 0.
4.5.14. From Example 4.5.6 the equation of the line tangent to t he parabola at .x
0
; x
2
0
/ is (A) y D
x
2
0
C2x
0
x.
(a) From (A), .x; y/ D .5; 9/ is on the tangent line t hrough .x
0
; x
2
0
/ if and only if 9 D x
2
0
C 10x
0
,
or x
2
0
10x
0
C 9 D .x
0
1/.x
0
9/ D 0. Letting x
0
D 1 in (A ) yields the line y D 1 C 2x, tangent
to t he parabola at .x
0
; x
2
0
/ D .1; 1/. Letting x
0
D 9 in ( A) yields the line y D 81 C18x, t angen t to the
parabola at .x
0
; x
2
0
/ D .9; 81/.
(b) From (A), .x; y/ D .6; 11/ is on the tangent line thro ugh .x
0
; x
2
0
/ if and only if 11 D x
2
0
C12x
0
,
or x
2
0
12x
0
C11 D .x
0
1/.x
0
11/ D 0. Letti ng x
0
D 1 in (A) yields the line y D 1 C2x, tangent
to the parabola at .x
0
; x
2
0
/ D .1; 1/. Letti ng x
0
D 11 in (A) yields the line y D 121 C 22x, tangent to
the parabola at .x
0
; x
2
0
/ D .11; 21/.
(c) From (A), .x; y/ D .6; 20/ is on the tangent line thro ugh .x
0
; x
2
0
/ if and only if 20 D x
2
0
12x
0
,
or x
2
0
C 12x
0
C 20 D .x
0
C 2/.x
0
C 10/ D 0. Letting x
0
D 2 in (A) yields the line y D 4 4x,
tangent to t he parabola at .x
0
; x
2
0
/ D .2; 4/. Lett ing x
0
D 10 in (A) yields the line y D 100 20x,
tangent to t he parabola at .x
0
; x
2
0
/ D .10; 100/.
(d) From (A), .x; y/ D .3; 5/ is on the tangent l ine through .x
0
; x
2
0
/ if and only if 5 D x
2
0
6x
0
,
or x
2
0
C6x
0
C5 D .x
0
C1/.x
0
C5/ D 0. Letting x
0
D 1 in (A) yield s the line y D 1 2x, tangent
to t he parabola at .x
0
; x
2
0
/ D .1; 1/. Letting x
0
D 5 in (A) yield s the line y D 25 10x, tang ent to
the parabola at .x
0
; x
2
0
/ D .5; 25/.
Section 4.5
Applications to Curves
47
4.5.15. (a) If .x
0
; y
0
/ is any po int on the circle such that x
0
¤ ˙1 (and therefore y
0
¤ 0), then
differentiating (A) yields 2x
0
C 2y
0
y
0
0
D 0, so y
0
0
D
x
0
y
0
. Therefore,the equation of the tangent line is
y D y
0
x
0
y
0
.x x
0
/. Since x
2
0
C y
2
0
D 1, this is equivalent to (B).
(b) Since y
0
D
x
0
y
0
on the tangent line, we can rewrite (B) as y xy
0
D
1
y
0
. Hence (F)
1
.y xy
0
/
2
D
y
2
0
and (G) x
2
0
D 1 y
2
0
D
.y xy
0
/
2
1
.y xy
0
/
2
. Since .y
0
/
2
D
x
2
0
y
2
0
, (F) and (G) imply that .y
0
/
2
D
.y xy
0
/
2
1, which implies (C).
(c) Using t he quadratic for mula to solve (C) for y
0
yields
y
0
D
xy ˙
p
x
2
C y
2
1
x
2
1
.H/
if .x; y/ is on a tangent line with slope y
0
. If y D
1 x
0
x
y
0
, then x
2
Cy
2
1 D x
2
C
1 x
0
x
y
0
2
1 D
x x
0
y
0
2
(since x
2
0
C y
2
0
D 1). Since y
0
D
x
0
y
0
, this implies that (H) i s equivalent to
x
0
y
0
D
1
x
2
1
x.1 x
0
x/
y
0
˙
ˇ
ˇ
ˇ
ˇ
x x
0
y
0
ˇ
ˇ
ˇ
ˇ
, which holds if and only if we choose the ˙" so that ˙
ˇ
ˇ
ˇ
ˇ
x x
0
y
0
ˇ
ˇ
ˇ
ˇ
D
x x
0
y
0
. Therefore,we must choose ˙ D if
x x
0
y
0
> 0, so (H) reduces to (D), or ˙ D C if
x x
0
y
0
< 0, so (H) reduces to (E).
(d) Differentiating (A) yields 2x C 2yy
0
D 0, so y
0
D
x
y
on either semicircle. Sin ce (D) and (E)
both reduce to y
0
D
xy
1 x
2
D
x
y
(since x
2
C y
2
D 1) on both semicircles, the conclusio n fol lows.
(e) From (D) and (E) the slopes of tangent lines from (5,5) tangent to the circle are y
0
D
25 ˙
p
49
24
D
3
4
;
4
3
. Therefore, tangent lines are y D 5 C
3
4
.x 5/ D
1 C 3x=5
4=5
and y D 5 C
4
3
.x 5/ D
1 4x=5
3=5
,
which intersect the circle at .3=5; 4=5/ .4=5; 3=5/, respectively. (See (B)).
4.5.16. (a) If .x
0
; y
0
/ is any point on the parabola such that x
0
> 0 (and therefore y
0
¤ 0), then
differentiating (A) yield s 1 D 2y
0
y
0
0
, so y
0
0
D
1
2y
0
. Therefore,the equation of the tangent line is y D
y
0
C
1
2y
0
.x x
0
/. Since x
0
D y
2
0
, this is equivalent to (B).
(b) Since y
0
D
1
2y
0
on the tangent line, we can rewrite (B) as
y
0
2
D y xy
0
. Substi tuting this into (B)
yields y D .y xy
0
/ C
x
4.y xy
0
/
, which impli es (C).
(c) Using t he quadratic for mula to solve (C) for y
0
yields
y
0
D
y ˙
p
y
2
x
2x
.F/
if .x; y/ is on a tangent line with slope y
0
. If y D
y
0
2
C
x
2y
0
, then y
2
x D
1
4
y
0
x
y
0
2
so (F)
48 Chapter 4
Applications of First Order Equations
is equivalent to
1
2y
0
D
y
0
C
x
y
0
˙
ˇ
ˇ
ˇ
ˇ
y
0
x
y
0
ˇ
ˇ
ˇ
ˇ
4x
which holds if and only if we choose the ˙" so th at
˙
ˇ
ˇ
ˇ
ˇ
y
0
x
y
0
ˇ
ˇ
ˇ
ˇ
D
y
0
x
y
0
. Therefore,we must choose ˙ D C if x > y
2
0
D x
0
, so (F) reduces to (D),
or ˙ D if x < y
2
0
D x
0
, so (F) reduces to (E).
(d) Differentiating (A) yields 1 D 2yy
0
, so y
0
D
1
2y
on either half of the parabola. Since (D) and (E)
both reduce to this if x D y
2
, the conclusion fo llows.
4.5.18. The equation of the line tangent to the curve at .x
0
; y.x
0
// is y D y.x
0
/ C y
0
.x
0
/.x x
0
/.
Since y.x
0
=2/ D 0, y.x
0
/
y
0
.x
0
/x
0
2
D 0. Since x
0
is arbitrary, i t follows that y
0
D
2y
x
, so
y
0
y
D
2
x
,
ln jyj D 2 ln jxjC k, and y D cx
2
. Since .1; 2/ is on the curve, c D 2. Therefore,y D 2x
2
.
4.5.20. The equation of the line tangent to the curve at .x
0
; y.x
0
// is y D y.x
0
/ C y
0
.x
0
/.x x
0
/.
Since .x
1
; y
1
/ is on the line, y.x
0
/ C y
0
.x
0
/.x
1
x
0
/ D y
1
. Since x
0
is arbitrary, it follows that
y C y
0
.x
1
x/ D y
1
, so
y
0
y y
1
D
1
x x
1
, ln jy y
1
j D ln jx x
1
j C k, and y y
1
D c.x x
1
/.
4.5.22. The equation of the line tangent to the curve at .x
0
; y.x
0
// is y D y.x
0
/ Cy
0
.x
0
/.x x
0
/. Since
y.0/ D x
0
, x
0
D y.x
0
/y
0
.x
0
/x
0
. Since x
0
is arbitrary, it follows that x D yxy
0
, so (A) y
0
y
x
D 1.
The solutions of (A) are of the form y D ux, wh ere u
0
x D 1, so u
0
D
1
x
. Therefore,u D ln jxjCc
and y D x ln jxj C cx.
4.5.24. The equation of the line normal to the curve at .x
0
; y
0
/ is y D y.x
0
/
x x
0
y
0
.x
0
/
. Sin ce y.0/ D
2y.x
0
/, y.x
0
/ C
x
0
y
0
.x
0
/
D 2y.x
0
/. Since x
0
is arbitrary, it follows that y
0
y D x, so (A)
y
2
2
D
x
2
2
C
c
2
and y
2
D x
2
C c. Now y.2/ D 1 $ c D 3. Therefore,y D
p
x
2
3.
4.5.26. Differentiating the given equation yields 2x C 4y C 4xy
0
C 2yy
0
D 0, so y
0
D
x C 2y
2x C y
is a differential equatio n for the given family, and (A) y
0
D
2x C y
x C 2y
is a differential equatio n for the
orthogonal traj ectories. Substituting y D ux in (A) yields u
0
x Cu D
2 C u
1 C 2u
, so u
0
x D
2.u
2
1/
1 C 2u
and
1 C 2u
.u 1/.u C 1/
u
0
D
2
x
, or
3
u 1
C
1
u C 1
u
0
D
4
x
. Therefore, 3 ln ju1jCln juC1j D 4 l n jxjC
K, so .u1/
3
.uC1/ D
k
x
4
. Substituting u D
y
x
yields the orthogonal trajectories .y x/
3
.y Cx/ D k.
4.5.28. Differentiating yield s ye
x
2
.1C2x
2
/Cxe
x
2
y
0
D 0, so y
0
D
y.1 C 2x
2
/
x
is a differential equation
for the given family. Theref ore,(A) y
0
D
x
y.1 C 2x
2
/
is a differential equation for t he o rthogonal
trajectories. From (A), yy
0
D
x
1 C 2x
2
, so
y
2
2
D
1
4
ln.1 C2x
2
/ C
k
2
, and the orthogonal trajectories
are given by y
2
D
1
2
ln.1 C 2x
2
/ C k.
Section 4.5
Applications to Curves
49
4.5.30. Differentiating (A) y D 1 C cx
2
yields (B) y
0
D 2cx. From (C), c D
y 1
x
2
. Substituting this
into (B) yields the differential equation y
0
D
2.y 1/
x
for the given family of parabolas. Therefore,y
0
D
x
2.y 1/
is a differential equation for the orthogonal trajectori es. Separating variables yields 2.y
1/y
0
D x, so .y 1/
2
D
x
2
2
Ck. Now y.1/ D 3 $ k D
9
2
, so .y 1/
2
D
x
2
2
C
9
2
. Therefore,(D)
y D 1 C
r
9 x
2
2
. This curve interesects the parab ola (A) if and only if the equation (C) cx
2
D
r
9 x
2
2
has a solution x
2
in .0; 9/. Therefore,c > 0 is a necessaary condition fo r intersection. We will
show that it is also sufficient. Squaring both sid es of (C) and simplifying yields 2c
2
x
4
Cx
2
9 D 0. Using
the quadratic formula to solve this for x
2
yields x
2
D
1 C
p
1 C 72c
2
4c
2
. The condit ion x
2
< 9 holds if
and only if 1C
p
1 C 72c
2
< 36c
4
, which is equivalent to 1C72c
2
< .1C36c
2
/
2
D 1C72c
2
C1296c
4
,
which holds for all c > 0.
4.5.32. The angles and
1
from the x-axis to the tangents to C and C
1
satisfy tan D f .x
0
; y
0
/ and
tan
1
D
f .x
0
; y
0
/ C tan ˛
1 f .x
0
; y
0
/ tan ˛
D
tan C tan ˛
1 t an tan ˛
D tan. C˛/. Therefore, assuming and
1
are both in
Œ0; 2/,
1
D C ˛.
4.5.34. Circles centered at the ori gin are given by x
2
C y
2
D r
2
. Differentiating yields 2x C 2yy
0
D 0,
so y
0
D
x
y
is a differential equation for the given fami ly, and y
0
D
.x=y/ C tan ˛
1 C .x=y/ tan ˛
is a differential
equation for the desired famil y. Substituting y D ux yields u
0
x Cu D
1=u C tan ˛
1 C .1=u/ tan ˛
D
1 C u tan ˛
u C tan ˛
.
Therefore,u
0
x D
1 C u
2
u C tan ˛
,
u C tan ˛
1 C u
2
u
0
D
1
x
and
1
2
ln.1 C u
2
/ C tan ˛ tan
1
u D ln jxj C k.
Substituting u D
y
x
yields
1
2
ln.x
2
C y
2
/ C .tan ˛/ tan
1
y
x
D k.
CHAPTER 5
Linear Second Order Equations
5.1 HOMOGENEOUS LINEAR E QUATIONS
5.1.2. (a) If y
1
D e
x
cos x, then y
0
1
D e
x
.cos x sin x/ and y
00
1
D e
x
.cos x sin x sin x cos x/ D
2e
x
sin x, so y
00
1
2y
0
1
C2y
1
D e
x
.2 sin x 2 cos x C 2 sin x C 2 cos x/ D 0. If y
2
D e
x
sin x, then
y
0
2
D e
x
.sin x Ccos x/ and y
00
2
D e
x
.sin x C cos x C cos x sin x/ D 2e
x
cos x, so y
00
2
2y
0
2
C2y
2
D
e
x
.2 cos x 2 sin x 2 cos x C 2 sin x/ D 0.
(b) If (B) y D e
x
.c
1
cos x C c
2
sin x/, then
y
0
D e
x
.c
1
.cos x sin x/ Cc
2
.sin x C cos x// .C/
and
y
00
D c
1
e
x
.cos x sin x sin x cos x/
Cc
2
e
x
.sin x C cos x C cos x si n x/
D 2e
x
.c
1
sin x C c
2
cos x/;
so
y
00
2y
0
C 2y D c
1
e
x
.2 sin x 2 cos x C 2 sin x C 2 cos x/
Cc
2
e
x
.2 cos x 2 sin x 2 cos x C2 sin x/ D 0:
(c) We must choose c
1
and c
2
in (B) so that y.0/ D 3 and y
0
.0/ D 2. Setting x D 0 in (B) and (C)
shows that c
1
D 3 and c
1
C c
2
D 2, so c
2
D 5. Therefore, y D e
x
.3 cos x 5 sin x/.
(d) We must choose c
1
and c
2
in (B) so that y.0/ D k
0
and y
0
.0/ D k
1
. Setting x D 0 in (B) and (C)
shows that c
1
D k
0
and c
1
Cc
2
D k
1
, so c
2
D k
1
k
0
. Therefore, y D e
x
.k
0
cos x C .k
1
k
0
/ sin x/.
5.1.4. ( a) If y
1
D
1
x 1
, then y
0
1
D
1
.x 1/
2
and y
00
1
D
2
.x 1/
3
, so
.x
2
1/y
00
1
C 4xy
0
1
C2y
1
D
2.x
2
1/
.x 1/
3
4x
.x 1/
2
C
2
x 1
D
2.x C 1/ 4x C 2.x 1/
.x 1/
2
D 0:
Similar manipulations show that .x
2
1/y
00
2
C 4xy
0
2
C 2y
2
D 0. The general solution on each of the
inter vals .1; 1/, .1; 1/, and .1; 1/ is (B) y D
c
1
x 1
C
c
2
x C 1
.
51
52 Chapter 5
Linear Second Order Equations
(b) Differentiating (B) yields (C) y
0
D
c
1
.x 1/
2
c
2
.x C 1/
2
. We must choose c
1
and c
2
in (B) so
that y.0/ D 5 and y
0
.0/ D 1. Setting x D 0 in (B) and (C) shows that c
1
C c
2
D 5; c
1
c
2
D 1.
Therefore,c
1
D 2 and c
2
D 3, so y D
2
x 1
3
x C 1
on .1; 1/.
(d) The Wronskian of fy
1
; y
2
g is
W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1
x 1
1
x C 1
1
.x 1/
2
1
.x C 1/
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
2
.x
2
1/
2
; .D/
so W .0/ D 2. Since p.x/ D
4x
x
2
1
, so
Z
x
0
p.t/ dt D
Z
x
0
4t
t
2
1
dt D ln.x
2
1/
2
, Abel’s f ormula
implies that W .x/ D W .0/e
ln.x
2
1/
2
D
2
.x
2
1/
2
, consistent with (D).
5.1.6. From Abel’s formula, W.x/ D W./e
3
R
x
.t
2
C1/ d t
D 0 e
3
R
x
.t
2
C1/ d t
D 0.
5.1.8. p.x/ D
1
x
; therefore
Z
x
1
p.t/ dt D
Z
x
1
dt
t
D ln x, so Abel’s formula yields W .x/ D W .1/e
ln x
D
1
x
.
5.1.10. p.x/ D 2; P .x/ D 2x; y
2
D uy
1
D ue
3x
; u
0
D
Ke
P.x/
y
2
1
.x/
D
Ke
2x
e
6x
D Ke
4x
;
u D
K
4
e
4x
. Choose K D 4; then y
2
D e
4x
e
3x
D e
x
.
5.1.12. p.x/ D 2a; P.x/ D 2ax; y
2
D uy
1
D ue
ax
; u
0
D
Ke
P.x/
y
2
1
.x/
D
Ke
2ax
e
2ax
D K; u D Kx.
Choo se K D 1; then y
2
D xe
ax
.
5.1.14. p.x/ D
1
x
; P .x/ D ln x; y
2
D uy
1
D ux; u
0
D
Ke
P.x/
y
2
1
.x/
D
Kx
x
2
D
K
x
; u D K ln x.
Choo se K D 1; then y
2
D x ln x.
5.1.16. p.x/ D
1
x
; P .x/ D ln jxj; y
2
D uy
1
D ux
1=2
e
2x
; u
0
D
Ke
P.x/
y
2
1
.x/
D
Kx
xe
4x
D e
4x
;
u D
Ke
4x
4
. Choose K D 4; then y
2
D e
4x
.x
1=2
e
2x
/ D x
1=2
e
2x
.
5.1.18. p.x/ D
2
x
; P .x/ D 2 l n jxj ; y
2
D uy
1
D ux cos x; u
0
D
Ke
P.x/
y
2
1
.x/
D
Kx
2
x
2
cos
2
x
D
K sec
2
x; u D K tan x. Choose K D 1; then y
2
D tan x.x cos x/ D x sin x.
5.1.20. p.x/ D
3x C 2
3x 1
D 1
3
3x 1
; P .x/ D x ln j3x 1j; y
2
D uy
1
D ue
2x
;
u
0
D
Ke
P.x/
y
2
1
.x/
D
K.3x 1/e
x
e
4x
D K.3x 1/e
3x
; u D Kxe
3x
. Choose K D 1; then
y
2
D xe
3x
e
2x
D xe
x
.
Section 5.1
Homogeneous Linear Equations
53
5.1.22. p.x/ D
2.2x
2
1/
x.2x C1/
D 2
2
2x C 1
C
2
x
; P .x/ D 2x ln j2x C 1j C 2 ln jxj; y
2
D
uy
1
D
u
x
; u
0
D
Ke
P.x/
y
2
1
.x/
D
K.2x C 1/e
2x
x
2
x
2
D K.2x C 1/e
2x
; u D Kxe
2x
. Choose K D 1; then
y
2
D
xe
2x
x
D e
2x
.
5.1.24. Suppose that y 0 on .a; b/. Then y
0
0 and y
00
0 on .a; b/, so y is a solu tion of (A)
y
00
Cp.x/y
0
Cq.x/y D 0; y.x
0
/ D 0; y
0
.x
0
/ D 0 on .a; b/. Since Theorem 5.1.1 implies that (A) has
only one so lution on .a; b/, the conclusion follows.
5.1.26. If f´
1
; ´
2
g is a fundamental set of solutions of (A) on .a; b/, then every solution y of (A) on .a; b/
is a li near combination of f ´
1
; ´
2
g; that is, y D c
1
´
1
C c
2
´
2
D c
1
.˛y
1
C ˇy
2
/ C c
2
.y
1
C ıy
2
/ D
.c
1
˛ C c
2
/y
1
C .c
1
ˇ C c
2
ı/y
2
, which shows that every solution of ( A ) on .a; b/ can be written as a
linear combinat ion of fy
1
; y
2
g. Therefore,fy
1
; y
2
g is a fundamental set of solutions of (A) on .a; b/.
5.1.28. The Wronsk ian of f y
1
; y
2
g is
W D
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
y
2
y
0
1
y
0
2
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
ky
1
y
0
1
ky
0
1
ˇ
ˇ
ˇ
ˇ
ˇ
D k.y
1
y
0
1
y
0
1
y
1
/ D 0:
nor y
2
can be a solution of y
00
C p.x/y
0
C q.x/y D 0 on .a; b/.
5.1.30. W .x
0
/ D
y
1
.x
0
/y
0
2
.x
0
/ y
0
1
.x
0
/y
2
.x
0
/
D 0 if either y
1
.x
0
/ D y
2
.x
0
/ D 0 or y
0
1
.x
0
/ D
y
0
2
.x
0
/ D 0, and Theorem 5.1.6 implies that fy
1
; y
2
g is linearly dependent on .a; b/.
5.1.32. Let x
0
be an arbitrar y point in .a; b/. By the motivating argument preceding Theorem 5.1.4, (B)
W.x
0
/ D y
1
.x
0
/y
0
2
.x
0
/ y
0
1
.x
0
/y
2
.x
0
/ ¤ 0. Now let y be th e solution of y
00
C p.x/y
0
C q.x/y D
0; y.x
0
/ D y
1
.x
0
/; y
0
.x
0
/ D y
0
1
.x
0
/. By assumption, y is a linear combination of fy
1
; y
2
g on .a; b/;
that is, y D c
1
y
1
C c
2
y
2
, where
c
1
y
1
.x
0
/ C c
2
y
2
.x
0
/ D y
1
.x
0
/
c
1
y
0
1
.x
0
/ C c
2
y
0
2
.x
0
/ D y
0
1
.x
0
/:
Solving this system by Cramers’ rule yiel ds
c
1
D
1
W.x
0
/
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
.x
0
/ y
2
.x
0
/
y
0
1
.x
0
/ y
0
2
.x
0
/
ˇ
ˇ
ˇ
ˇ
ˇ
D 1 and c
2
D
1
W.x
0
/
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
.x
0
/ y
1
.x
0
/
y
0
1
.x
0
/ y
1
.x
0
/
ˇ
ˇ
ˇ
ˇ
ˇ
D 0:
Therefore,y D y
1
, which shows that y
1
is a solution of (A). A similar argument shows that y
2
is a
solution of (A).
5.1.34. Expanding the determinant by cofactors of its fir st column shows that the first equation in the
exercise can be written as
y
W
ˇ
ˇ
ˇ
ˇ
ˇ
y
0
1
y
0
2
y
00
1
y
00
2
ˇ
ˇ
ˇ
ˇ
ˇ
y
0
W
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
y
2
y
00
1
y
00
2
ˇ
ˇ
ˇ
ˇ
ˇ
C
y
00
W
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
y
2
y
0
1
y
0
2
ˇ
ˇ
ˇ
ˇ
ˇ
D 0;
which is of the form (A) with
p D
1
W
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
y
2
y
00
1
y
00
2
ˇ
ˇ
ˇ
ˇ
ˇ
and q D
1
W
ˇ
ˇ
ˇ
ˇ
ˇ
y
0
1
y
0
2
y
00
1
y
00
2
ˇ
ˇ
ˇ
ˇ
ˇ
:
54 Chapter 5
Linear Second Order Equations
5.1.36. Theorem 5.1.6 implies that th at there are constants c
1
and c
2
such that (B) y D c
1
y
1
C c
2
y
2
on
.a; b/. To see that c
1
and c
2
are unique, assume that (B) holds, and let x
0
be a point in .a; b/. Then (C)
y
0
D c
1
y
0
1
C c
2
y
0
2
. Setting x D x
0
in (B) and (C) yields
c
1
y
1
.x
0
/ C c
2
y
2
.x
0
/ D y.x
0
/
c
1
y
0
1
.x
0
/ C c
2
y
0
2
.x
0
/ D y
0
.x
0
/:
Since Theorem 5 .1.6 implies t hat y
1
.x
0
/y
0
2
.x
0
/ y
0
1
.x
0
/y
2
.x
0
/ ¤ 0, the argument preceding Theo-
rem 5.1.4 implies that c
1
and c
2
are given uniquely by
c
1
D
y
0
2
.x
0
/y.x
0
/ y
2
.x
0
/y
0
.x
0
/
y
1
.x
0
/y
0
2
.x
0
/ y
0
1
.x
0
/y
2
.x
0
/
c
2
D
y
1
.x
0
/y
0
.x
0
/ y
0
1
.x
0
/y.x
0
/
y
1
.x
0
/y
0
2
.x
0
/ y
0
1
.x
0
/y
2
.x
0
/
:
5.1.38. The general solution of y
00
D 0 is y D c
1
C c
2
x, so y
0
D c
2
. Imposing the stated initial
conditions on y
1
D c
1
C c
2
x yields c
1
C c
2
x
0
D 1 and c
2
D 0; therefore c
1
D 1, so y
1
D 1. Imposing
the stated initial conditions on y
2
D c
1
C c
2
x yields c
1
C c
2
x
0
D 0 and c
2
D 1; theref ore c
1
D x
0
, so
y
2
D x x
0
. The solution of the general initial value problem is y D k
0
C k
1
.x x
0
/.
5.1.40. Let y
1
D a
1
cos !x C a
2
sin !x and y
2
D b
1
cos !x C b
2
sin !x. Then
a
1
cos !x
0
C a
2
sin !x
0
D 1
!.a
1
sin !x
0
C a
2
cos !x
0
/ D 0
and
b
1
cos !x
0
C b
2
sin !x
0
D 0
!.b
1
sin !x
0
C b
2
cos !x
0
/ D 1:
Solving these systems yields a
1
D cos !x
0
, a
2
D sin !x
0
, b
1
D
sin !x
0
!
, and b
2
D
cos !x
0
!
.
Therefore, y
1
D cos !x
0
cos !x C sin !x
0
sin !x D cos !.x x
0
/ and y
2
D
1
!
.sin !x
0
cos !x C
cos !x
0
sin !x/ D
1
!
sin !.xx
0
/. The solution of the gener al initial value problem is y D k
0
cos !.x
x
0
/ C
k
1
!
sin !.x x
0
/.
5.1.42. (a) If y
1
D x
2
, then y
0
1
D 2x and y
00
1
D 2, so x
2
y
00
1
4xy
0
1
C6y
1
D x
2
.2/ 4x.2x/ C6x
2
D 0
for x in .1; 1/. If y
2
D x
3
, t hen y
0
2
D 3x
2
and y
00
2
D 6x, so x
2
y
00
2
4xy
0
2
C 6y
2
D x
2
.6x/
4x.3x
2
/ C 6x
3
D 0 for x in .1; 1/. If x ¤ 0, then y
2
.x/=y
1
.x/ D x, which is nonconstant on
.1; 0/ and .0; 1/, so Theorem 5.1.6 implies that fy
1
; y
2
g is a fundamental set of solu tions of (A) on
each of these intervals.
(b) Theorem 5.1.6 and (a) imply that y satisfies (A) on .1; 0/ and on .0; 1/ if and only if y D
a
1
x
2
C a
2
x
3
; x > 0;
b
1
x
2
C b
2
x
3
; x < 0:
Since y.0/ D 0 we can complete t he proof that y is a solution of (A) on
.1; 1/ by showing that y
0
.0/ and y
00
.0/ both exist if and only if a
1
D b
1
. Since
y.x/ y.0/
x 0
D
a
1
x C a
2
x
2
; if x > 0;
b
1
x C b
2
x
2
; if x < 0;
it follows that y
0
.0/ D lim
x!0
y.x/ y.0/
x 0
D 0. Therefore, y
0
D
2a
1
x C 3a
2
x
2
; x 0;
2b
1
x C 3b
2
x
2
; x < 0:
Since
y
0
.x/ y
0
.0/
x 0
D
2a
1
C 3a
2
x; if x > 0;
2b
1
C 3b
2
x; if x < 0;
it follows that y
00
.0/ D lim
x!0
y
0
.x/ y
0
.0/
x 0
exists if and
Section 5.2
Constant Coefficient Homogeneous Equations
55
only if a
1
D b
1
. By renaming a
1
D b
1
D c
1
, a
2
D c
2
, and b
2
D c
3
we see that y is a solution of (A) on
.1; 1/ if and on ly if y D
c
1
x
2
C c
2
x
3
; x 0;
c
1
x
2
C c
3
x
3
; x < 0:
(c) We have sh own that y.0/ D y
0
.0/ D 0 for any choice of c
1
and c
2
in (C). Therefore,the given
initial value problem has a solution if and only if k
0
D k
1
D 0, in wh ich case every function of the form
(C) i s a solution.
(d) If x
0
> 0, then c
1
and c
2
in (C) are uniquely d et ermined by k
0
and k
1
, but c
3
can be chosen
arbitrarily. Therefore,(B) has a unique solution on .0; 1/, but infinitely many solutions on .1; 1/. If
x
0
< 0, then c
1
and c
3
in (C) are uniquely determined by k
0
and k
1
, but c
2
can be chosen arbitrarily.
Therefore,(B) has a unique solution on .1; 0/, but infinitely many solutions on .1; 1/.
5.1.44. (a) If y
1
D x
3
, then y
0
1
D 3x
2
and y
00
1
D 6x, so x
2
y
00
1
6xy
0
1
C 12y
1
D x
2
.6x/ 6x.3x
2
/ C
12x
3
D 0 for x in .1; 1/. If y
2
D x
4
, then y
0
2
D 4x
3
and y
00
2
D 12x
2
, so x
2
y
00
2
6xy
0
2
C 12y
2
D
x
2
.12x
2
/ 6x.4x
3
/ C 12x
4
D 0 f or x in .1; 1/. If x ¤ 0, then y
2
.x/=y
1
.x/ D x, which is
nonconstant on .1; 0/ and .0; 1/, so Theorem 5.1.6 implies that fy
1
; y
2
g is a fundamental set of
solutions of (A) on each of these intervals.
(b) Theorem 5.1.2 and (a) imply that y satisfies (A ) on .1; 0/ and on .0; 1/ if and only if (C)
y D
a
1
x
3
C a
2
x
4
; x > 0;
b
1
x
3
C b
2
x
4
; x < 0:
Since y.0/ D 0 we can complete the proof that y is a solution of
(A) on .1; 1/ by showing that y
0
.0/ and y
00
.0/ both exist for any choice of a
1
, a
2
, b
1
, and b
2
.
Since
y.x/ y.0/
x 0
D
a
1
x
2
C a
2
x
3
; if x > 0;
b
1
x
2
C b
2
x
3
; if x < 0;
it follows that y
0
.0/ D lim
x!0
y.x/ y.0/
x 0
D 0.
Therefore, y
0
D
3a
1
x
2
C 4a
2
x
3
; x 0;
3b
1
x
2
C 4b
2
x
3
; x < 0:
Since
y
0
.x/ y
0
.0/
x 0
D
3a
1
x C 4a
2
x
2
; if x > 0;
3b
1
x C 4b
2
x
2
; if x < 0;
it follows that y
00
.0/ D lim
x!0
y
0
.x/ y
0
.0/
x 0
D 0. Therefore,(B) is a solution of (A) on .1; 1/.
(c) We have shown that y.0/ D y
0
.0/ D 0 for any choice of a
1
, a
2
, b
1
, and b
2
in (B). Therefore,the
given initial value problem has a solution if and on ly if k
0
D k
1
D 0, in which case every function of the
form (B) is a solution.
(d) If x
0
> 0, then a
1
and a
2
in (B) are uniquely determined by k
0
and k
1
, but b
1
and b
2
can be chosen
arbitrarily. Therefore,(C) has a unique so lution on .0; 1/, but infinitely many so lutions on .1; 1/.
If x
0
< 0, th en b
1
and b
2
in (B) are uniquely determin ed by k
0
and k
1
, but a
1
and a
2
can be chosen
arbitrarily. Therefore,(C) has a unique solution on .1; 0/, but infinitely many solutions on .1; 1/.
5.2 CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS
5.2.2. p.r/ D r
2
4r C 5 D .r 2/
2
C1; y D e
2x
.c
1
cos x C c
2
sin x/.
5.2.4. p.r/ D r
2
4r C 4 D .r 2/
2
; y D e
2x
.c
1
C c
2
x/.
5.2.6. p.r/ D r
2
C 6r C 10 D .r C 3/
2
C 1; y D e
3x
.c
1
cos x C c
2
sin x/.
5.2.8. p.r/ D r
2
C r D r.r C 1/; y D c
1
C c
2
e
x
.
5.2.10. p.r/ D r
2
C 6r C 13y D .r C 3/
2
C 4; y D e
3x
.c
1
cos 2x C c
2
sin 2x/.
5.2.12. p.r/ D 10r
2
3r 1 D .2r 1/.5r C 1/ D 10.r 1=2/.r C 1=5/; y D c
1
e
x=5
Cc
2
e
x=2
.
5.2.14. p.r/ D 6r
2
r 1 D .2r 1/.3r C 1/ D 6.r 1=2/.r C 1=3/; y D c
1
e
x=3
C c
2
e
x=2
;
y
0
D
c
1
3
e
x=3
C
c
2
2
e
x=2
; y.0/ D 10 ) c
1
Cc
2
D 10; y
0
.0/ D 0 )
c
1
3
C
c
2
2
D 0; c
1
D 6; c
2
D 4;
y D 4e
x=2
C 6e
x=3
.
56 Chapter 5
Linear Second Order Equations
5.2.16. p.r/ D 4r
2
4r 3 D .2r 3/.2r C 1/ D 4.r 3=2/.r C 1=2/; y D c
1
e
x=2
C c
2
e
3x=2
;
y
0
D
c
1
2
e
x=2
C
3c
2
2
e
3x=2
; y.0/ D
13
12
) c
1
C c
2
D
13
12
; y
0
.0/ D
23
24
)
c
1
2
C
3c
2
2
D
23
24
;
c
1
D
1
3
; c
2
D
3
4
; y D
e
x=2
3
C
3e
3x=2
4
.
5.2.18. p.r/ D r
2
C 7r C 12 D .r C 3/.r C 4/; y D c
1
e
4x
C c
2
e
3x
; y
0
D 4c
1
e
4x
3c
2
e
3x
;
y.0/ D 1 ) c
1
C c
2
D 1; y
0
.0/ D 0 ) 4c
1
3c
2
D 0; c
1
D 3, c
2
D 4; y D 3e
4x
4e
3x
.
5.2.20. p.r/ D 36r
2
12r C 1 D .6r 1/
2
D 36.r 1=6/
2
; y D e
x=6
.c
1
C c
2
x/; y
0
D
e
x=6
6
.c
1
C
c
2
x/ C c
2
e
x=6
; y.0/ D 3 ) c
1
D 3; y
0
.0/ D
5
2
)
c
1
6
C c
2
D
5
2
) c
2
D 2; y D e
x=6
.3 C 2x/.
5.2.22. (a) From (A), ay
00
.x/ C by
0
.x/ C cy.x/ D 0 for all x. Replacing x by x x
0
yields (C)
ay
00
.x x
0
/ C by
0
.x x
0
/ C cy.x x
0
/ D 0. If ´.x/ D y.x x
0
/, then the chain rule implies t hat
´
0
.x/ D y
0
.x x
0
/ and ´
00
.x/ D y
00
.x x
0
/, so (C) is equivalent to
00
C b´
0
C c´ D 0.
(b) If fy
1
; y
2
g is a fundamental set of solutions of (A) then Theorem 5.1.6 implies that y
2
=y
1
is
nonconstant. Therefore,
´
2
.x/
´
1
.x/
D
y
2
.x x
0
/
y
1
.x x
0
/
is also nonconstant, so Theorem 5.1.6 implies that f´
1
; ´
2
g
is a fundamental set of solutions of (A).
(c) Let p.r/ D ar
2
C br C c b e the characteristic polynomial of (A). Then:
If p.r/ D 0 has distinct real roots r
1
and r
2
, then the general solution of (A) is
y D c
1
e
r
1
.xx
0
/
C c
2
e
r
2
.xx
0
/
:
If p.r/ D 0 has a repeated root r
1
, then the general solution of (A) is
y D e
r
1
.xx
0
/
.c
1
C c
2
.x x
0
//:
If p.r/ D 0 has complex conjugate roots r
1
D C i! and r
2
D i! .where ! > 0/, then the
general solution of (A) is
y D e
.xx
0
/
.c
1
cos !.x x
0
/ C c
2
sin !.x x
0
//:
5.2.24. p.r/ D r
2
6r 7 D .r 7/.r C 1/;
y D c
1
e
.x2/
C c
2
e
7.x2/
I
y
0
D c
1
e
.x2/
C 7c
2
e
7.x2/
I
y.2/ D
1
3
) c
1
C c
2
D
1
3
; y
0
.2/ D 5 ) c
1
C 7c
2
D 5; c
1
D
1
3
; c
2
D
2
3
; y D
1
3
e
.x2/
2
3
e
7.x2/
.
5.2.26. p.r/ D 9r
2
C6r C 1 D .3r C 1/
2
D 9.r C 1=3/
2
;
y D e
.x2/=3
.c
1
C c
2
.x 2// I
y
0
D
1
3
e
.x2/=3
.c
1
C c
2
.x 2// Cc
2
e
.x2/=3
I
Section 5.2
Constant Coefficient Homogeneous Equations
57
y.2/ D 2 ) c
1
D 2; y
0
.2/ D
14
3
)
c
1
3
C c
2
D
14
3
) c
2
D 4; y D e
.x2/=3
.2 4.x 2//.
5.2.28. p.r/ D r
2
C 3;
y D c
1
cos
p
3
x
3
C c
2
sin
p
3
x
3
I
y
0
D
p
3c
1
sin
p
3
x
3
C
p
3c
2
cos
p
3
x
3
I
y.=3/ D 2 ) c
1
D 2; y
0
.=3/ D 1 ) c
2
D
1
p
3
;
y D 2 cos
p
3
x
3
1
p
3
sin
p
3
x
3
:
5.2.30. y is a so lution of ay
00
C by
0
C cy D 0 if and only if
y D c
1
e
r
1
.xx
0
/
C e
r
2
.xx
0
/
y
0
D r
1
c
1
e
r
1
.xx
0
/
C r
2
e
r
2
.x x
0
/:
Now y
1
.x
0
/ D k
0
and y
0
1
.x
0
/ D k
1
) c
1
C c
2
D k
0
; r
1
c
1
C r
2
c
2
D k
1
. Therefore,c
1
D
r
2
k
0
k
1
r
2
r
1
and c
2
D
k
1
r
1
k
0
r
2
r
1
. Substi tuting c
1
and c
2
into the above equations for y and y’ yields
y D
r
2
k
0
k
1
r
2
r
1
e
r
1
.xx
0
/
C
k
1
r
1
k
0
r
2
r
1
e
r
2
.xx
0
/
D
k
0
r
2
r
1
r
2
e
r
1
.xx
0
/
r
1
e
r
2
.xx
0
/
C
k
1
r
2
r
1
e
r
2
.xx
0
/
e
r
1
.xx
0
/
:
5.2.32. y is a solution of ay
00
C by
0
Ccy D 0 if and only if
y D e
.xx
0
/
.c
1
cos !.x x
0
/ C c
2
sin !.x x
0
// (A)
and
y
0
D e
.xx
0
/
.c
1
cos !.x x
0
/ C c
2
sin !.x x
0
//
C!e
.xx
0
/
.c
1
sin !.x x
0
/ C c
2
cos !.x x
0
// :
Now y
1
.x
0
/ D k
0
) c
1
D k
0
and y
0
1
.x
0
/ D k
1
) c
1
C !c
2
D k
1
, so c
2
D
k
1
k
0
!
. Substituting
c
1
and c
2
into (A) yields
y D e
.xx
0
/
k
0
cos !.x x
0
/ C
k
1
k
0
!
sin !.x x
0
/
:
5.2.34. (b)
e
i
1
e
i
2
D .cos
1
C i sin
1
/.cos
2
Ci sin
2
/
D .cos
1
cos
2
sin
1
sin
2
/ C i.sin
1
cos
2
C cos
1
sin
2
/
D cos.
1
C
2
/ C i sin.
1
C
2
/ D e
i.
1
C
2
/
:
58 Chapter 5
Linear Second Order Equations
(c)
e
´
1
C´
2
D e
1
C
1
/C
2
C
2
/
D e
1
C˛
2
/Ci
1
Cˇ
2
/
D e
1
C˛
2
/
e
i
1
Cˇ
2
/
(from (F) wi th ˛ D ˛
1
C ˛
2
and ˇ D ˇ
1
C ˇ
2
)
D e
˛
1
e
˛
2
e
i
1
Cˇ
2
/
(property of the real–valued exponential function)
D e
˛
1
e
˛
2
e
iˇ
1
e
iˇ
2
(from (b))
D e
˛
1
e
iˇ
1
e
˛
2
e
iˇ
2
D e
˛
1
C
1
e
˛
2
C
2
D e
´
1
e
´
2
:
(d) The real and imaginary parts of ´
1
D e
.Ci!/x
are u
1
D e
x
cos !x and v
1
D e
x
sin !x, which
are both solutions of ay
00
C by
0
C cy D 0, by Theorem 5.2.1(c). Similarly, the real and imaginary parts
of ´
2
D e
.i!/x
are u
2
D e
x
cos.!x/ D e
x
cos !x and v
1
D e
x
sin.!x/ D e
x
sin !x, which
are both solutions of ay
00
C by
0
C cy D 0, by Theorem 5.2.1,(c).
5.3 NONHOMOGENEOUS LINEAR EQUATIONS
5.3.2. The characteristic po lynomial of the complementary equation is p.r/ D r
2
4r C5 D .r 2/
2
C1,
so fe
2x
cos x; e
2x
sin xg is a fund amental set of solution s for the complementary equ at ion. Let y
p
D
A CBx; then y
00
p
4y
0
p
C5y
p
D 4B C5.A CBx/ D 1 C5x. Therefore,5B D 5; 4B C5A D 1, so
B D 1, A D 1. Therefore,y
p
D 1 C x is a particular solution and y D 1 Cx C e
2x
.c
1
cos x C c
2
sin x/
is the general solution.
5.3.4. The characteristic polynomial of the complementary equation is p.r/ D r
2
4r C4 D .r 2/
2
, so
fe
2x
; xe
2x
g is a fundamental set of solutions for the complementary equation. Let y
p
D A CBx CCx
2
;
then y
00
p
4y
0
p
C4y
p
D 2C 4.B C2Cx/ C4.A CBx CCx
2
/ D .2C 4B C4A/ C.8C C4B/x C
4Cx
2
D 2 C 8x 4x
2
. Therefore,4C D 4; 8C C 4B D 8; 2C 4B C 4A D 2, so C D 1,
B D 0, and A D 1. Therefore,y
p
D 1 x
2
is a particular solution and y D 1 x
2
C e
2x
.c
1
C c
2
x/ is
the general solution.
5.3.6. The characteristic polynomial of the complementary equation is p.r/ D r
2
C 6r C 10 D .r C
3/
2
C 1, so fe
3x
cos x; e
3x
sin xg i s a fundamental set of solutions for the complementary equation.
Let y
p
D A C Bx; then y
00
p
C 6y
0
p
C 10y
p
D 6B C 10.A C Bx/ D 22 C 20x. Therefore,10B D
20; 6B C 10A D 22, so B D 2, A D 1. Therefore,y
p
D 1 C 2x is a particular solution and (A)
y D 1 C2x Ce
3x
.c
1
cos x Cc
2
sin x/ is the general solution. Now y.0/ D 2 ) 2 D 1 Cc
1
) c
1
D 1.
Differentiatin g (A) yields y
0
D 2 3e
3x
.c
1
cos x Cc
2
sin x/ C e
3x
.c
1
sin x Cc
2
cos x/, so y
0
.0/ D
2 ) 2 D 2 3c
1
C c
2
) c
2
D 1. y D 1 C 2x C e
3x
.cos x sin x/ is the solution of the initial
value prob lem.
5.3.8. If y
p
D
A
x
, then x
2
y
00
p
C 7xy
0
p
C 8y
p
D A
x
2
2
x
3
C 7x
1
x
2
C
8
x

D
3A
x
D
6
x
if
A D 2. Therefore,y
p
D
2
x
is a particular solution.
5.3.10. If y
p
D Ax
3
, then x
2
y
00
p
xy
0
p
C y
p
D A
x
2
.6x/ x.3x
2
/ C x
3
D 4Ax
3
D 2x
3
if A D
1
2
.
Therefore,y
p
D
x
3
2
is a particular solution.
5.3.12. If y
p
D Ax
1=3
, then x
2
y
00
p
C xy
0
p
C y
p
D A
x
2
2x
5=3
9
!
C x
x
2=3
3
!
C x
1=3
!
D
10A
9
x
1=3
D 10x
1=3
if A D 9. Therefore,y
p
D 9x
1=3
is a particular solution.
Section 5.3
Nonhomogeneous Linear Equations
59
5.3.14. If y
p
D
A
x
3
, then x
2
y
00
p
C 3xy
0
p
3y
p
D A
x
2
12
x
5
C 3x
3
x
4
C
3
x
3
D 0. Therefore,y
p
is not a solution of the given equat ion for any choice of A.
5.3.16. The characteristic p olynomial of the complementary equation is p.r/ D r
2
C5r 6 D .r C6/.r
1/, so fe
6x
; e
x
g is a fund amental set of so lutions fo r the complementary equation. Let y
p
D Ae
3x
; then
y
00
p
C5y
0
p
6y
p
D p.3/Ae
3x
D 18Ae
3x
D 6e
3x
if A D
1
3
. Therefore,y
p
D
e
3x
3
is a particular solution
and y D
e
3x
3
C c
1
e
6x
C c
2
e
x
is the general solution.
5.3.18. The characteristic polynomial of the complementary equatio n is p.r / D r
2
C8r C7 D .r C1/.r C
7/, so fe
7x
; e
x
g is a fundamental set of solutions for the complementary equation. Let y
p
D Ae
2x
;
then y
00
p
C 8y
0
p
C 7y
p
D p.2/Ae
2x
D 5Ae
2x
D 10e
2x
if A D 2. Therefore,y
p
D 2e
2x
is
a particular solution and (A) y D 2e
2x
Cc
1
e
7x
Cc
2
e
x
is the general solution. Differentiating (A)
yields y
0
D 4e
2x
7c
1
e
7x
c
2
e
x
. Now y.0/ D 2 ) 2 D 2 C c
1
C c
2
and y
0
.0/ D 10 )
10 D 4 7c
1
c
2
. Therefore,c
1
D 1 and c
2
D 1, so y D 2e
2x
e
7x
Ce
x
is the solution of the
initial value problem.
5.3.20. The characteristic polynomial of the complementary equatio n is p.r/ D r
2
C 2r C 10 D .r C
1/
2
C 9, so fe
x
cos 3x; e
x
sin 3xg is a fundamental set of solutions for the complementary equation.
If y
p
D Ae
x=2
, then y
00
p
C 2y
0
p
C 10y
p
D p.1=2/Ae
x=2
D
45
4
Ae
x=2
D e
x=2
if A D
4
45
. Therefore,
y
p
D
4
45
e
x=2
is a particular sol ution and y D
4
45
e
x=2
Ce
x
.c
1
cos 3xCc
2
sin 3x/ is the general solution.
5.3.22. The characteristic polynomial of the complementary equation is p.r/ D r
2
7r C 12 D .r
4/.r 3/. If y
p
D Ae
4x
, then y
00
p
7y
0
p
C12y
p
D p.4/Ae
4x
D 0 e
4x
D 0, so y
00
p
7y
0
p
C12y
p
¤ 5e
4x
for any choice of A.
5.3.24. The characteristic polynomial of the complementary equation is p.r/ D r
2
8r C16 D .r 4/
2
,
so fe
4x
; xe
4x
g is a fundamental set of solu tions for the complementary equation. If y
p
D A cos x C
B sin x, then y
00
p
8y
0
p
C16y
p
D .A cos xCB sin x/8.A si n xCB cos x/C16.A cos x CB sin x/ D
.15A 8B/ cos x C.8A C15B/ sin x, so 15A 8B D 23; 8A C15B D 7, which implies that A D 1
and B D 1. Hence y
p
D cos x sin x and y D cos x sin x C e
4x
.c
1
C c
2
x/ is the general solution.
5.3.26. The characteristic polynomial of the complementary equation is p.r/ D r
2
2r C3 D .r 1/
2
C2,
so fe
x
cos
p
2x; e
x
sin
p
2xg is a fundamental set of solutions f or the complementary equation. If y
p
D
A cos 3x C B sin 3x, then y
00
p
2y
0
p
C 3y
p
D 9.A cos 3x C B sin 3x/ 6.A sin 3x C B cos 3x/ C
3.A cos 3x CB sin 3x/ D .6A C6B/ cos 3x C.6A 6B/ sin 3x, so 6A 6B D 6; 6A 6B D 6,
which implies that A D 1 and B D 0. Hence y
p
D cos 3x is a particular solution and y D cos 3x C
e
x
.c
1
cos
p
2x Cc
2
sin
p
2x/ is the general solution.
5.3.28. The characteristic po lynomial of the complementary equation is p.r/ D r
2
C 7r C 12 D .r C
3/.r C 4/, so fe
4x
; e
3x
g is a fundamental set o f solutions for the complementary equation. If y
p
D
A cos 2x CB sin 2x, then y
00
p
C7y
0
p
C12y
p
D 4.A cos 2x CB sin 2x/ C14.A si n 2x CB cos 2x/ C
12.A cos x CB si n x/ D .8AC14B/ cos 2x C.8B 14a/ sin2x, so 8AC14B D 2; 14AC8B D 36,
which implies that A D 2 and B D 1. Hence y
p
D 2 cos 2x C sin 2x is a part icular solution and
(A) y D 2 cos 2x C sin 2x C c
1
e
4x
C c
2
e
3x
is the general solution. Differentiating (A) yields
y
0
D 2 sin 2x C 2 cos 2x 4c
1
e
4x
3c
2
e
3x
. Now y.0/ D 3 ) 3 D 2 C c
1
C c
2
and y
0
.0/ D
3 ) 3 D 2 4c
1
3c
2
. Therefore, c
1
D 2 and c
2
D 3, so y D 2 cos 2x C sin 2x C 2e
4x
3e
3x
is the solution of the initial value problem.
60 Chapter 5
Linear Second Order Equations I
5.3.30. fcos !
0
x; sin!
0
xg is a fundamental set of solutions of the complementary equation. If y
p
D
A cos !x C B sin !x, then y
00
p
C !
2
0
y
p
D !
2
.A cos !x C B sin !x/ C !
2
0
.A cos !x C B sin !x/ D
.!
2
0
!
2
/.A cos !x C B sin !x/ D M cos !x C N sin !x if A D
M
!
2
0
!
2
and B D
N
!
2
0
!
2
.
Therefore,
y
p
D
1
!
2
0
!
2
.M cos !x C N sin !x/
is a particular solution of t he given equation and
y D
1
!
2
0
!
2
.M cos !x C N sin !x/ C c
1
cos !
0
x Cc
2
sin !
0
x
is the general solution.
5.3.32. If y
p
D A cos !x C B sin !x, then ay
00
p
C by
0
p
C cy
p
D a!
2
.A cos !x C B sin !x/ C
b!.A sin !xCB cos !x/Cc.A cos !xCB sin !x/ D
.c a!
2
/A C b!B
cos !xC
b!A C .c a!
2
/B
sin !x.
Therefore, y
p
is a solution of (A) if and only if the set of equations (B) .c a!
2
/A C b!B D
M; b!A C .c a!
2
/B D N has a solution. If .c a!
2
/
2
C .b!/
2
¤ 0, then (B) has the so-
lution A D
.c a!
2
/M b!N
.c a!
2
/
2
C .b!/
2
, B D
.c a!
2
/N C b!M
.c a!
2
/
2
C .b!/
2
, and y
p
D A cos !x C B sin !x is a
solution of (A). If .c a!
2
/
2
C.b!/
2
D 0 (which is true if and only if the left side of (A) is of the form
a.y
00
C!
2
y/, then the coefficients of A and B in (B) are all zero, so (B) does not have a solution, so (A)
does n ot have a solution of the form y
p
D A cos !x C B sin !x.
5.3.34. From Exercises 5.3.2 and 5.3.17, y
p
1
D 1 C x and y
p
2
D e
2x
are particular solutions of
y
00
4y
0
C5y D 1C5x and y
00
4y
0
C5y D e
2x
respectively, and fe
2x
cos x; e
2x
sin xgis a fundamental
set of solutions of the complementary equation. Therefore,y
p
D y
p
1
Cy
p
2
D 1 Cx Ce
2x
is a particular
solution of the given equation, and y D 1 C x C e
2x
.1 C c
1
cos x C c
2
sin x/ is the general solution.
5.3.36. From Exercises 5.3.4 and 5.3.19, y
p
1
D 1 x
2
and y
p
2
D e
x
are particular solutions of
y
00
4y
0
C 4y D 2 C8x 4x
2
and y
00
4y
0
C4y D e
x
respectively, and fe
2x
; xe
2x
g is a fundamental
set of solutions of the complementary equation. Therefore,y
p
D y
p
1
Cy
p
2
D 1 x
2
Ce
x
is a particular
solution of the given equation, and y D 1 x
2
C e
x
C e
2x
.c
1
C c
2
x/ is the general solution.
5.3.38. From Exercises 5.3.6 and 5.3.21, y
p
1
D 1 C 2x and y
p
2
D e
3x
are particular solutions of
y
00
C6y
0
C10y D 22 C20x and y
00
C6y
0
C10y D e
3x
respectively, and fe
3x
cos x; e
3x
sin xg is a
fundamental set of solutions of the complementary equation. Therefore,y
p
D y
p
1
Cy
p
2
D 1C2x Ce
3x
is a parti cular solution of the given equatio n, and y D 1 C 2x C e
3x
.1 C c
1
cos x C c
2
sin x/ is the
general solution.
5.3.40. Letting c
1
D c
2
D 0 shows that ( A) y
00
p
C p.x/y
0
p
C q.x/y
p
D f . Letting c
1
D 1 and c
2
D 0
shows that (B) .y
1
C y
p
/
00
C p.x/.y
1
C y
p
/
0
C q.x/.y
1
C y
p
/ D f . Now subtract (A) from (B) to see
that y
00
1
C p.x/y
0
1
C q.x/y
1
D 0. Letting c
1
D 0 and c
2
D 1 shows that (C) .y
2
C y
p
/
00
C p.x/.y
2
C
y
p
/
0
Cq.x/.y
2
C y
p
/ D f . Now subtract (A) from (C) to see that y
00
2
C p.x/y
0
2
C q.x/y
2
D 0.
5.4 THE METHOD OF UNDETERMINED C OEFFICIENTS I
5.4.2. If y D ue
3x
, then y
00
6y
0
C5y D e
3x
Œ.u
00
6u
0
C 9u/ 6.u
0
3u/ C 5u D e
3x
.358x/,
so u
00
12u
0
C32u D 358x and u
p
D ACBx, where 12BC32.ACBx/ D 358x. Therefore,32B D
8, 32A 12B D 35, so B D
1
4
, A D 1, and u
p
D 1
x
4
. Therefore, y
p
D e
3x
1
x
4
.
Section 5.4
The Method of Undetermined Coefficients I
61
5.4.4. I f y D ue
2x
, then y
00
C 2y
0
Cy D e
2x
Œ.u
00
C4u
0
C 4u/ C 2.u
0
C2u/ C u D e
2x
.7 15x C
9x
2
/ so u
00
C 6u
0
C 9u D 7 15x C 9x
2
and u
p
D A C Bx C Cx
2
, where 2C C 6.B C 2Cx/ C
9.A C Bx C Cx
2
/ D 7 15x C 9x
2
. Therefore,9C D 9, 9B C 12C D 15, 9A C 6B C 2C D 7,
so C D 1, B D 3, A D 1, and u
p
D 1 3x C x
2
. Therefore,y
p
D e
2x
.1 3x C x
2
/.
5.4.6. If y D ue
x
, then y
00
y
0
2y D e
x
Œ.u
00
C 2u
0
C u/ .u
0
Cu/ 2u D e
x
.9 C 2x 4x
2
/ so
u
00
Cu
0
2u D 9 C2x 4x
2
, and u
p
D A CBx CCx
2
, where 2C C.B C2Cx/ 2.A CBx CCx
2
/ D
9 C2x 4x
2
. Therefore,2C D 4, 2B C2C D 2, 2A CB C2C D 9, so C D 2, B D 1, A D 2,
and u
p
D 2 C x C 2x
2
. Therefore, y
p
D e
x
.2 C x C 2x
2
/.
5.4.8. If y D ue
x
, t hen y
00
3y
0
C 2y D e
x
Œ.u
00
C 2u
0
C u/ 3.u
0
C u/ C 2u D e
x
.3 4x/, so
u
00
u
0
D 3 4x and u
p
D Ax C Bx
2
, where 2B .A C 2Bx/ D 3 4x. Therefore,2B D 4,
A C 2B D 3, so B D 2, A D 1, and u
p
D x.1 C 2x/. Therefore,y
p
D xe
x
.1 C 2x/.
5.4.10. If y D ue
2x
, then 2y
00
3y
0
2y D e
2x
Œ2.u
00
C 4u
0
C 4u/ 3.u
0
C 2u/ 2u D e
2x
.6 C
10x/, so 2u
00
C 5u
0
D 6 C 10x and u
p
D Ax C Bx
2
, wher e 2.2B/ C 5.A C 2Bx/ D 6 C 10x.
Therefore,10B D 10, 5A C 4B D 6, so B D 1, A D 2, and u
p
D x.2 C x/. Therefore,y
p
D
xe
2x
.2 C x/.
5.4.12. If y D ue
x
, then y
00
2y
0
C y D e
x
Œ.u
00
C 2u
0
C u/ 2.u
0
C u/ C u D e
x
.1 6x/, so
u
00
D 16x Integrating twice and taking the constants of integration to be zero yields u
p
D x
2
1
2
x
.
Therefore, y
p
D x
2
e
x
1
2
x
.
5.4.14. If y D ue
x=3
, then 9y
00
C 6y
0
C y D e
x=3
9
u
00
2u
0
3
C
u
9
C 6
u
0
u
3
C u
D
e
x=3
.2 4x C 4x
2
/, so 9u
00
D 2 4x C 4x
2
, or u
00
D
1
9
.2 4x C 4x
2
/. Integrating twice
and taking the constants of integration to be zero yields u
p
D
x
2
27
.3 2x C x
2
/. Therefore, y
p
D
x
2
e
x=3
27
.3 2x C x
2
/.
5.4.16. If y D ue
x
, then y
00
6y
0
C 8y D e
x
Œ.u
00
C 2u
0
C u/ 6.u
0
C u/ C 8u D e
x
.11 6x/, so
u
00
4u
0
C3u D 11 6x and u
p
D ACBx, where 4B C3.A CBx/ D 11 6x. Therefore,3B D 6,
3A 4B D 11, so B D 2, A D 1 and u
p
D 1 2x. Therefore,y
p
D e
x
.1 2x/. The characteristic
polynomial of the complementary equation is p.r/ D r
2
6r C 8 D .r 2/.r 4/, so fe
2x
; e
4x
g is a
fundamental set of solutions of the complementary equati on. Therefore, y D e
x
.12x/Cc
1
e
2x
Cc
2
e
4x
is the general solution of the nonhomogeneous equation.
5.4.18. If y D ue
x
, then y
00
C 2y
0
3y D e
x
Œ.u
00
C 2u
0
C u/ C 2.u
0
C u/ 3u D 16xe
x
, so
u
00
C 4u
0
D 16x and u
p
D Ax C Bx
2
, where 2B C 4.A C 2Bx/ D 16x. Therefore,8B D 16,
4AC2B D 0, so B D 2, A D 1, and u
p
D x.12x/. Therefore,y
p
D xe
x
.12x/. The characteristic
polynomial of the complementary equation is p.r/ D r
2
C 2r 3 D .r C 3/.r 1/, so fe
x
; e
3x
g is a
fundamental set of sol utions of the complementary equation. Therefore, y D xe
x
.12x/Cc
1
e
x
Cc
2
e
3x
is the general solution of the nonhomogeneous equation.
5.4.20. If y D ue
2x
, then y
00
4y
0
5y D e
2x
Œ.u
00
C 4u
0
C 4u/ 4.u
0
C 2u/ 5u D 9e
2x
.1Cx/, so
u
00
9u D 9 C9x and u
p
D A CBx, where 9.A CBx/ D 9 C9x. Therefore,9B D 9, 9A D 9,
so B D 1, A D 1, and u
p
D 1 x. Therefore,y
p
D e
2x
.1 C x/. The characteristic polynomial
of th e complementary equation is p.r/ D r
2
4r 5 D .r 5/.r C 1/, so fe
x
; e
5x
g is a fundamental
62 Chapter 5
Linear Second Order Equations I
set of solutions o f the complementary equation. Therefore,(A) y D e
2x
.1 C x/ C c
1
e
x
C c
2
e
5x
is
the general solution of the nonhomogeneous equation. Differentiating (A) yields y
0
D 2e
2x
.1 C x/
e
2x
c
1
e
x
C 5c
2
e
5x
. Now y.0/ D 0; y
0
.0/ D 10 ) 0 D 1 C c
1
C c
2
; 10 D 3 c
1
C 5c
2
, so
c
1
D 2, c
2
D 1. Therefore,y D e
2x
.1 C x/ C2e
x
e
5x
is the solution of the initial value problem.
5.4.22. If y D ue
x
, then y
00
C4y
0
C3y D e
x
Œ.u
00
2u
0
C u/ C 4.u
0
u/ C 3u D e
x
.2C8x/, so
u
00
C2u
0
D 2 8x and u
p
D Ax CBx
2
, where 2B C 2.A C2Bx/ D 2 8x. Therefore,4B D 8,
2A C 2B D 2, so B D 2, A D 1, and u
p
D x.1 2x/. Therefore,y
p
D xe
x
.1 2x/. The
characteristic polynomial of the complementary equation is p.r/ D r
2
C 4r C 3 D .r C 3/.r C 1/,
so fe
x
; e
3x
g is a fundamental set of solutions of the complementary equation. Therefore,(A) y D
xe
x
.12x/Cc
1
e
x
Cc
2
e
3x
is the general solu tion of the nonhomogeneous equation. Differentiating
(A) yields y
0
D xe
x
.1 2x/ Ce
x
.1 4x/ c
1
e
x
3c
2
e
3x
. Now y.0/ D 1; y
0
.0/ D 2 ) 1 D
c
1
Cc
2
; 2 D 1 c
1
3c
2
, so c
1
D 2, c
2
D 1. Therefore,y D e
x
.2 Cx 2x
2
/ e
3x
is the solution
of th e initial value problem.
5.4.24. We must find part icular sol utions y
p
1
and y
p
2
of (A) y
00
C y
0
C y D xe
x
and (B) y
00
C
y
0
C y D e
x
.1 C 2x/, respectively. To find a particular solution of (A) we write y D ue
x
. Then
y
00
C y
0
C y D e
x
Œ.u
00
C 2u
0
C u/ C .u
0
C u/ C u D xe
x
so u
00
C 3u
0
C 3u D x and u
p
D A C Bx,
where 3B C 3.A C Bx/ D x. Therefore,3B D 1, 3A C 3B D 0, so B D
1
3
, A D
1
3
, and u
p
D
1
3
.1 x/, so y
p
1
D
e
x
3
.1 x/. To fin d a particular so lution of (B) we write y D ue
x
. Then
y
00
C y
0
C y D e
x
Œ.u
00
2u
0
C u/ C .u
0
u/ Cu D e
x
.1 C 2x/, so u
00
u
0
C u D 1 C 2x and
u
p
D A C Bx, where B C .A C Bx/ D 1 C 2x. Therefore, B D 2, A B D 1, so A D 3, and
u
p
D 2 C 3x, so y
p
2
D e
x
.3 C 2x/. Now y
p
D y
p
1
C y
p
2
D
e
x
3
.1 x/ C e
x
.3 C 2x/.
5.4.26. We must find particular so lutions y
p
1
and y
p
2
of (A) y
00
8y
0
C 16y D 6xe
4x
and (B ) y
00
8y
0
C16y D 2 C16x C16x
2
, respectively. To find a particular solu tion of (A) we write y D ue
4x
. Then
y
00
8y
0
C 16y D e
x
Œ.u
00
C 8u
0
C 16u/ 8.u
0
C 4u/ C 16u D 6xe
4x
, so u
00
D 6x, u
p
D x
3
. and
y
p
1
D x
3
e
4x
. To find a particular solution of (B) we write y
p
D ACBxCCx
2
. Then y
00
p
8y
0
p
C16y
p
D
2C 8.B C2Cx/C16.ACBxCCx
2
/ D .16A8B C2C /C.16B 16C /xC16Cx
2
D 2C16xC16x
2
if 16C D 16, 16B 16C D 16, 16A 8B C 2C D 2. Therefore,C D 1, B D 2, A D 1, and
y
p
2
D 1 C 2x C x
2
. Now y
p
D y
p
1
C y
p
2
D x
3
e
4x
C 1 C 2x C x
2
.
5.4.28. We must find particular solutions y
p
1
and y
p
2
of (A) y
00
2y
0
C 2y D e
x
.1 C x/ and (B)
y
00
2y
0
C2y D e
x
.2 8x C5x
2
/, respectively. To find a particular solution of (A) we wr ite y D ue
x
.
Then y
00
2y
0
C 2y D e
x
Œ.u
00
C 2u
0
C u/ 2.u
0
C u/ C 2u D e
x
.1 C x/, so u
00
C u D 1 C x and
u
p
D 1 C x, so y
p
1
D e
x
.1 C x/. To find a particular solution of (B) we write y D ue
x
. Then
y
00
2y
0
C 2y D e
x
Œ.u
00
2u
0
C u/ 2.u
0
u/ C 2u D e
x
.2 8x C 5x
2
/, so u
00
4u
0
C 5u D
2 8x C5x
2
and u
p
D A CBx CCx
2
, where 2C 4.B C2Cx/ C5.A CBx CCx
2
/ D 2 8x C5x
2
.
Therefore,5C D 5, 5B 8C D 8, 5A 4B C 2C D 2, so C D 1, B D 0, A D 0, and u
p
D x
2
.
Therefore,y
p
2
D x
2
e
x
. Now y
p
D y
p
1
C y
p
2
D e
x
.1 C x/ C x
2
e
x
.
5.4.30. (a) If y D ue
˛x
, t hen ay
00
C by
0
C cy D e
˛x
a.u
00
C u
0
C ˛
2
u/ C b.u
0
C ˛u/ C cu
D
e
˛x
au
00
C .2a˛ C b//u
0
C .a˛
2
C b˛ Cc/u
D e
˛x
.au
00
Cp
0
/u
0
Cp/u/. Therefore,ay
00
Cby
0
C
cy D e
˛x
G.x/ if and only if au
00
C p
0
/u
0
C p/u D G.x/.
(b) Substituting u
p
D A C Bx C Cx
2
C Dx
3
into (B) yields
a.2C C 6Dx/ C p
0
/.B C2Cx C 3Dx
2
/ C p/.A C Bx C Cx
2
C Dx
3
/
D Œp/A C p
0
/B C 2aC C Œp/B C 2p
0
/C C 6aDx
CŒp/C C 3p
0
/Dx
2
C p/Dx
3
D g
0
Cg
1
x C g
2
x
2
C g
3
x
3
Section 5.4
The Method of Undetermined Coefficients I
63
if
p/D D g
3
p/C C 3p
0
/D D g
2
p/B C2p
0
/C C 6aD D g
1
p/A C p
0
/B C 2aC D g
0
:
.C/
Since e
˛x
is n ot a solution of the complementary equation, p/ ¤ 0. Therefore,the triangular syst em
(C) can be solved successively for D, C , B and A.
(c) Since e
˛x
is a solution of the complementary equation while xe
˛x
is not, p/ D 0 and p
0
/ ¤ 0.
Therefore, ( B) reduces to (D) au
00
Cp
0
/u D G.x/. Substituting u
p
D Ax CBx
2
CCx
3
CDx
4
into
(D) yields
a.2B C 6Cx C 12Dx
2
/ C p
0
/.A C 2Bx C 3Cx
2
C 4Dx
3
/
D .p
0
/A C 2aB/ C .2p
0
/B C 6aC /x C .3p
0
/C C 12aD/x
2
C4p
0
/Dx
3
D g
0
C g
1
x C g
2
x
2
C g
3
x
3
if
4p
0
/D D g
3
3p
0
/C C 12aD D g
2
2p
0
/B C 6aC D g
1
p
0
/A C 2aB D g
0
:
Since p
0
/ ¤ 0 this triangular system can be solved successively for D, C , B and A.
(d) Since e
˛x
and xe
˛x
are solu tions of t he complementary equation, p/ D 0 and p
0
/ D 0.
Therefore, (B) reduces to (D) au
00
D G.x/, so u
00
D
G.x/
a
. Integrating this twice and taking the
constants of integr at ion yields the particular solution u
p
D x
2
g
0
2
C
g
1
6
x C
g
2
12
x
2
C
g
3
20
x
3
.
5.4.32. If y
p
D Axe
4x
, then y
00
p
7y
0
p
C12y
p
D Œ.8 C16x/ 7.1 C4x/ C12xAe
4x
D Ae
4x
D 5e
4x
if A D 1, so y
p
D 5xe
4x
.
5.4.34. If y
p
D e
3x
.A C Bx C Cx
2
/, then
y
00
p
3y
0
p
C 2y
p
D e
3x
Œ.9A C6B C 2C / C .9B C 12C /x C 9Cx
2
3e
3x
Œ.3A C B/ C .3B C 2C /x C 3Cx
2
C2e
3x
.A C Bx C Cx
2
/
D e
3x
Œ.2A C 3B C 2C / C .2B C 6C /x C 2Cx
2
D e
3x
.1 C 2x C x
2
/
if 2C D 1; 2B C 6C D 2; 2A C 3B C 2C D 1. Therefore,C D
1
2
, B D
1
2
, A D
1
4
, and
y
p
D
e
3x
4
.1 C 2x 2x
2
/.
5.4.36. If y
p
D e
x=2
.Ax
2
C Bx
3
C Cx
4
/, then
4y
00
p
C 4y
0
p
C y
p
D e
x=2
Œ8A .8A 24B/x C .A 12B C 48C /x
2
Ce
x=2
Œ.B 16C /x
3
C Cx
4
Ce
x=2
Œ8Ax .2A 12B/x
2
.2B 16C /x
3
2Cx
4
Ce
x=2
.Ax
2
C Bx
3
C Cx
4
/
D e
x=2
.8A C 24Bx C 48Cx
2
/ D e
x=2
.8 C 48x C 144x
2
/
64 Chapter 5
Linear Second Order Equations
if 48C D 144, 24B D 48, and 8A D 8. Therefore,C D 3, B D 2, A D 1, and y
p
D x
2
e
x=2
.1 C
2x C 3x
2
/.
5.4.38. If y D
R
e
˛x
P.x/ dx, then y
0
D e
˛x
P.x/. Let y D ue
˛x
; then .u
0
C˛u/e
˛x
D e
˛x
P.x/, which
implies (A). We must show that i t is possible to choose A
0
; : : : ; A
k
so that (B) .A
0
CA
1
x CA
k
x
k
/
0
C
˛.A
0
C A
1
x C A
k
x
k
/ D p
0
C p
1
x C C p
k
x
k
. By equating the coefficients of x
k
; x
k1
; : : : ; 1
(in that order) on the two sides of (B), we see that (B) holds if and onl y if ˛A
k
D p
k
and .k j C
1/A
kj C1
C˛A
k
D p
kj
; 1 j k.
5.4.40. If y D
R
x
k
e
˛x
dx, then y
0
D x
k
e
˛x
. Let y D ue
˛x
; then .u
0
C ˛u/e
˛x
D x
k
e
˛x
, so
u
0
C ˛u D x
k
. This equation has a particular solution u
p
D A
0
C A
1
x C A
k
x
k
, where (A) .A
0
C
A
1
x C A
k
x
k
/
0
C ˛.A
0
C A
1
x C A
k
x
k
/ D x
k
. By equating the coefficients of x
k
; x
k1
; : : : ; 1
on the two sides of (A), we see th at (A) holds if and only if ˛A
k
D 1 and .k j C 1/A
kj C1
C
˛A
k
j D 0; 1 j k. Therefore, A
k
D
1
˛
, A
k1
D
k
˛
2
, A
k2
D
k.k 1/
˛
3
, and, in general,
A
kj
D .1/
j
k.k 1/ .k j C 1/
˛
j C1
D
.1/
j
kŠ
˛
j C1
.k j
; 1 j k. By introducing the index
r D k j we can rewrite this as A
r
D
.1/
kr
kŠ
˛
krC1
rŠ
; 0 r k. Therefore, u
p
D
.1/
k
kŠ
˛
kC1
k
X
rD0
.˛x/
r
rŠ
and y D
.1/
k
kŠe
˛x
˛
kC1
k
X
rD0
.˛x/
r
rŠ
C c.
5.5 THE METHOD OF UNDETERMINED C OEFFICIENTS II
5.5.2. Let
y
p
D .A
0
C A
1
x/ cos x C .B
0
C B
1
x/ sin xI then
y
0
p
D .A
1
C B
0
C B
1
x/ cos x C .B
1
A
0
A
1
x/ sin x
y
00
p
D .2B
1
A
0
A
1
x/ cos x .2A
1
C B
0
CB
1
x/ sin x; so
y
00
p
C 3y
0
p
C y
p
D .3A
1
C 3B
0
C2B
1
C 3B
1
x/ cos x
C.3B
1
3A
0
2A
1
3A
1
x/ sin x
D .2 6x/ cos x 9 sin x
if 3B
1
D 6, 3A
1
D 0, 3B
0
C 3A
1
C 2B
1
D 2, 3A
0
C 3B
1
C 2A
1
D 9. Therefore,A
1
D 0,
B
1
D 2, A
0
D 1, B
0
D 2, and y
p
D cos x C .2 2x/ sin x.
5.5.4. Let y D ue
2x
. Then
y
00
C 3y
0
2y D e
2x
.u
00
C 4u
0
C 4u/ C 3.u
0
C 2u/ 2u
D e
2x
.u
00
C 7u
0
C 8u/ D e
2x
.5 cos 2x C 9 sin 2x/
if u
00
C 7u
0
C 8u D 5 cos 2x 9 sin 2x. Now let u
p
D A cos 2x C B sin 2x. Then
u
00
p
C 7u
0
p
C8u
p
D 4.A co s 2x C B sin 2x/ C 14.A sin 2x C B cos 2x/
C8.A cos 2x C B sin 2x/
D .4A C 14B/ cos 2x .14A 4B/ sin 2x
D 5 cos 2x 9 sin 2x
Section 5.5
The Method of Undetermined Coefficients II
65
if 4A C 14B D 5, 14A C 4B D 9. Therefore,A D
1
2
, B D
1
2
,
u
p
D
1
2
.cos 2x sin 2x/; and y
p
D
e
2x
2
.cos 2x sin 2x/:
5.5.6. Let y D ue
2x
. Then
y
00
C 3y
0
2y D e
2x
.u
00
4u
0
C 4u/ C 3.u
0
2u/ 2u
D e
2x
.u
00
u
0
4u/
D e
2x
Œ.4 C 20x/ cos 3x C .26 32x/ sin 3x
if u
00
u
0
4u D .4 C20x/ cos 3x C .26 32x/ sin 3x. Let
u
p
D .A
0
C A
1
x/ cos 3x C .B
0
CB
1
x/ sin 3xI then
u
0
p
D .A
1
C 3B
0
C 3B
1
x/ cos 3x C .B
1
3A
0
3A
1
x/ sin 3x
u
00
p
D .6B
1
9A
0
9A
1
x/ cos 3x .2A
1
C 9B
0
C 9B
1
x/ sin 3x; so
u
00
p
u
0
p
4u
p
D Œ13A
0
C A
1
C 3B
0
6B
1
C .13A
1
C 3B
1
/x cos 3x
Œ13B
0
C B
1
3A
0
C 6A
1
C .13B
1
3A
1
/x sin 3x
D .4 C 20x/ cos 3x C .26 32x/ sin 3x if
13A
1
3B
1
D 20
3A
1
13B
1
D 32
and
13A
0
3B
0
A
1
C 6B
1
D 4
3A
0
13B
0
6A
1
B
1
D 26:
From the first two equations, A
1
D 2, B
1
D 2. Substituti ng these in the last two equations yields
13A
0
3B
0
D 10, 3A
0
13B
0
D 16. Solv ing this pair yields A
0
D 1, B
0
D 1. Therefore,
u
p
D .1 2x/.cos 3x sin 3x/ and y
p
D e
2x
.1 2x/.cos 3x sin 3x/:
5.5.8. Let
y
p
D .A
0
x C A
1
x
2
/ cos x C .B
0
x CB
1
x
2
/ sin xI then
y
0
p
D
A
0
C .2A
1
C B
0
/x CB
1
x
2
cos x C
B
0
C .2B
1
A
0
/x B
1
x
2
sin x
y
00
p
D
2A
1
C 2B
0
.A
0
4B
1
/x A
1
x
2
cos x
C
2B
1
2A
0
.B
0
C 4A
1
/x B
1
x
2
sin x; so
y
00
p
C y
p
D .2A
1
C 2B
0
C 4B
1
x/ cos x C .2B
1
2A
0
4A
1
x/ sin x
D .4 C 8x/ cos x C .8 4x/ sin x
if 4B
1
D 8, 4A
1
D 4, 2B
0
C 2A
1
D 4, 2A
0
C 2B
1
D 8. Therefore, A
1
D 1, B
1
D 2, A
0
D 2,
B
0
D 3, and y
p
D x Œ.2 x/ cos x C .3 2x/ sin x.
5.5.10. Let y D ue
x
. Then
y
00
C 2y
0
C 2y D e
x
.u
00
2u
0
C u/ C 2.u
0
u/ C 2u
D e
x
.u
00
Cu/ D e
x
.8 cos x 6 sin x/
66 Chapter 5
Linear Second Order Equations
if u
00
C u D 8 cos x 6 sin x. Now let
u
p
D Ax cos x C Bx sin xI then
u
0
p
D .A C Bx/ cos x C .B Ax/ sin x
u
00
p
D .2B Ax/ cos x .2A C Bx/ sin x; so
u
00
p
C u
p
D 2B cos x 2A sin x D 8 co s x 6 sin x
if 2B D 8, 2A D 6. Therefore,A D 3, B D 4, u
p
D x.3 cos x C 4 sin x/, and y
p
D xe
x
.3 cos x C
4 sin x/.
5.5.12. Let
y
p
D .A
0
CA
1
x C A
2
x
2
/ cos x C .B
0
CB
1
x C B
2
x
2
/ sin xI then
y
0
p
D
A
1
C B
0
C .2A
2
C B
1
/x C B
2
x
2
cos x
C
B
1
A
0
C .2B
2
A
1
/x A
2
x
2
sin x;
y
00
p
D
A
0
C 2A
2
C 2B
1
.A
1
4B
2
/x A
2
x
2
cos x
C
B
0
C 2B
2
2A
1
.B
1
C 4A
2
/x B
2
x
2
sin x; so
y
00
p
C 2y
0
p
C y
p
D 2
A
1
C A
2
C B
0
C B
1
C.2A
2
C B
1
C 2B
2
/x C B
2
x
2
cos x
C2
B
1
C B
2
A
0
A
1
C .2B
2
A
1
2A
2
/x A
2
x
2
sin x
D 8x
2
cos x 4x sin x if
(i)
2B
2
D 8
2A
2
D 0
; (ii)
2B
1
C 4A
2
C 4B
2
D 0
2A
1
4A
2
C 4B
2
D 4
;
(iii)
2B
0
C 2A
1
C 2B
1
C 2A
2
D 0
2A
0
2A
1
C 2B
1
C 2B
2
D 0
:
From (i), A
2
D 0, B
2
D 4. Substituting these int o (ii) and solving for A
1
and B
1
yields A
1
D 10,
B
1
D 8. Substituting the known coefficient s into (iii) and solving for A
0
and B
0
yields A
0
D 14,
B
0
D 2. Therefore,y
p
D .14 10x/ cos x .2 C 8x 4x
2
/ sin x.
5.5.14. Let
y
p
D .A
0
C A
1
x C A
2
x
2
/ cos 2x C .B
0
CB
1
x C B
2
x
2
/ sin 2xI then
y
0
p
D
A
1
C 2B
0
C .2A
2
C 2B
1
/x C 2B
2
x
2
cos 2x
C
B
1
2A
0
C .2B
2
2A
1
/x 2A
2
x
2
sin 2x
y
00
p
D
4A
0
C 2A
2
C 4B
1
.4A
1
8B
2
/x 4A
2
x
2
cos 2x
C
4B
0
2B
2
4A
1
.4B
1
C8A
2
/x 4B
2
x
2
sin 2x; so
y
00
p
C3y
0
p
C 2y
p
D Œ2A
0
C 3A
1
C 4A
2
C 6B
0
C 4B
1
.2A
1
6A
2
6B
1
8B
2
/x .2A
2
6B
2
/x
2
cos 2x
CŒ2B
0
C 3B
1
C 4B
2
6A
0
4A
1
.2B
1
6B
2
C 6A
1
C 8A
2
/x .2B
2
C 6A
2
/x
2
sin 2x
D .1 x 4x
2
/ cos 2x .1 C 7x C 2x
2
/ sin 2x if
Section 5.5
The Method of Undetermined Coefficients II
67
(i)
2A
2
C 6B
2
D 4
6A
2
2B
2
D 2
; (ii)
2A
1
C 6B
1
C 6A
2
C 8B
2
D 1
6A
1
2B
1
8A
2
C 6B
2
D 7
;
(iii)
2A
0
C 6B
0
C 3A
1
C 4B
1
C 2A
2
D 1
6A
0
2B
0
4A
0
C 3B
1
C 2B
2
D 1
:
From (i), A
2
D
1
2
, B
2
D
1
2
. Substituting these int o (ii) and solving for A
1
and B
1
yields A
1
D 0,
B
1
D 0. Substituting the known coefficients into (iii) and solving for A
0
and B
0
yields A
0
D 0, B
0
D 0.
Therefore, y
p
D
x
2
2
.cos 2x sin 2x/.
5.5.16. Let y D ue
x
. Then
y
00
2y
0
C y D e
x
.u
00
C 2u
0
C u/ 2.u
0
C u/ C u
D e
x
u
00
D e
x
.3 C 4x x
2
/ cos x C .3 4x x
2
/ sin x
if u
00
D .3 C 4x x
2
/ cos x .3 4x x
2
/ sin x. Now let
u
p
D .A
0
C A
1
x C A
2
x
2
/ cos x C .B
0
C B
1
x C B
2
x
2
/ sin xI then
u
0
p
D
A
1
C B
0
C .2A
2
C B
1
/x CB
2
x
2
cos x
C
B
1
A
0
C .2B
2
A
1
/x A
2
x
2
sin x;
u
00
p
D
A
0
C 2A
2
C 2B
1
.A
1
4B
2
/x A
2
x
2
cos x
C
B
0
C 2B
2
2A
1
.B
1
C 4A
2
/x B
2
x
2
sin x
D .3 C 4x x
2
/ cos x .3 4x x
2
/ sin x if
(i)
A
2
D 1
B
2
D 1
; (ii)
A
1
C 4B
2
D 4
B
1
4A
2
D 4
;
(iii)
A
0
C 2B
1
C 2A
2
D 3
B
0
2A
1
C 2B
2
D 3
:
From (i), A
2
D 1, B
2
D 1. Substituting these into (ii) and solving for A
1
and B
1
yields A
1
D 0,
B
1
D 0. Substituting the known coefficients into (iii) and solving for A
0
and B
0
yields A
0
D 1, B
0
D 1.
Therefore,u
p
D .1 x
2
/.cos x C sin x/ and y
p
D e
x
.1 x
2
/.cos x C sin x/.
5.5.18. Let y D ue
x
. Then
y
00
C 2y
0
C y D e
x
.u
00
2u
0
C u/ C 2.u
0
u/ C u
D e
x
u
00
D e
x
Œ.5 2x/ cos x .3 C 3x/ sin x
if u
00
D .5 2x/ cos x .3 C 3x/ sin x. Let
u
p
D .A
0
C A
1
x/ cos x C .B
0
C B
1
x/ sin xI th en
u
0
p
D .A
1
C B
0
C B
1
x/ cos x C .B
1
A
0
A
1
x/ sin x
u
00
p
D .2B
1
A
0
A
1
x/ cos x .2A
1
C B
0
C B
1
x/ sin x
D .5 2x/ cos x .3 C 3x/ sin x
if A
1
D 2, B
1
D 3, A
0
C 2B
1
D 5, B
0
2A
1
=-3. Therefore, A
1
D 2, B
1
D 3, A
0
D 1,
B
0
D 1, u
p
D e
x
Œ.1 C 2x/ cos x .1 3x/ sin x, and y
p
D e
x
Œ.1 C 2x/ cos x .1 3x/ sin x.
68 Chapter 5
Linear Second Order Equations
5.5.20. Let
y
p
D .A
0
x C A
1
x
2
C A
2
x
3
/ cos x C .B
0
x C B
1
x
2
C B
2
x
3
/ sin xI then
y
0
p
D
A
0
C .2A
1
C B
0
/x C .3A
2
C B
1
/x
2
C B
2
x
3
cos x
C
B
0
C .2B
1
A
0
/x C .3B
2
A
1
/x
2
A
2
x
3
sin x
y
00
p
D
2A
1
C 2B
0
.A
0
6A
2
4B
1
/x .A
1
6B
2
/x
2
A
2
x
3
cos x
C
2B
1
2A
0
.B
0
C6B
2
C 4A
1
/x .B
1
C 6A
2
/x
2
B
2
x
3
sin x; so
y
00
p
C y
p
D
2A
1
C 2B
0
C .6A
2
C 4B
1
/x C 6B
2
x
2
cos x
C
2B
1
2A
0
C .6B
2
4A
1
/x 6A
2
x
2
sin x
D .2 C 2x/ cos x C .4 C6x
2
/ sin x if
(i)
6B
2
D 0
6A
2
D 6
; (ii)
4B
1
C 6A
2
D 2
4A
1
C 6B
2
D 0
; (iii)
2B
0
C 2A
1
D 2
2A
0
C 2B
1
D 4
:
From (i), A
2
D 1, B
2
D 0. Substituti ng these into (ii) and solv ing for A
1
and B
1
yields A
1
D 0,
B
1
D 2. Substituting the known coefficients into (iii) and solving for A
0
and B
0
yields A
0
D 0, B
0
D 2.
Therefore,y
p
D x
3
cos x C .x C 2x
2
/ sin x.
5.5.22. Let y D ue
x
. Then
y
00
7y
0
C 6y D e
x
.u
00
C 2u
0
C u/ 7.u
0
C u/ C 6u
D e
x
.u
00
5u
0
/ D e
x
.17 cos x 7 sin x/
if u
00
5u
0
D 17 cos x C 7 sin x. Now let u
p
D A cos x C B sin x. Then
u
00
p
5u
0
p
D .A cos x C B sin x/ 5.A sin x C B cos x/
D .A 5B/ cos x .B 5A/ si n x D 17 cos x C 7 sin x
if A 5B D 17, 5A B D 7. Therefore,A D 2, B D 3, u
p
D 2 cos x C 3 sin x, and y
p
D
e
x
.2 cos x C 3 sin x/. The characteristic polynomial of the complementary equation is p.r/ D r
2
7r C 6 D .r 1/.r 6/, so fe
x
; e
6x
g is a fundamental set of solutions of th e complementary equation.
Therefore, (A) y D e
x
.2 cos x C3 sin x/ Cc
1
e
x
Cc
2
e
6x
is the general solution of the nonhomogeneous
equation. Differentiating (A) yields y
0
D e
x
.2 cos x C3 sin x/Ce
x
.2 sin x C3 cos x/Cc
1
e
x
C6c
2
e
6x
,
so y.0/ D 4; y
0
.0/ D 2 ) 4 D 2 C c
1
C c
2
; 2 D 2 C 3 C c
1
C 6c
2
) c
1
C c
2
D 2; c
1
C 6c
2
D 3,
so c
1
D 3, c
2
D 1, and y D e
x
.2 cos x C 3 sin x/ C 3e
x
e
6x
.
5.5.24. Let y D ue
x
. Then
y
00
C 6y
0
C 10y D e
x
.u
00
C 2u
0
C u/ C 6.u
0
C u/ C 10u
D e
x
.u
00
C8u
0
C 17u/ D 40e
x
sin x
if u
00
C 8u
0
C 17u D 40 si n x. Let u
p
D A cos x C B sin x. Then
u
00
p
C 6u
0
p
C 17u
p
D .A cos x C B sin x/ C8.A sin x C B cos x/
C17.A cos x C B sin x/
D .16A C 8B/ cos x .8A 16B/ sin x D 40 sin x
Section 5.5
The Method of Undetermined Coefficients II
69
if 16A C 8B D 0, 8A C 16B D 40. Therefore,A D 1, B D 2, and y
p
D e
x
.cos x 2 si n x/.
The characteristic polynomial of t he complementary equation is p.r/ D r
2
C 6r C 10 D .r C 3/
2
C 1,
so fe
3x
cos x; e
3x
sin xg is a fundamental set of solutions of the complementary equat ion, and (A)
y D e
x
.cos x 2 sin x/ C e
3x
.c
1
cos x C c
2
sin x/ is the general solution of th e nonhomogeneous
equation. Therefore,y.0/ D 2 ) 2 D 1 C c
1
, so c
1
D 1. Differentiating (A) yields y
0
D e
x
.cos x
2 sin x/e
x
.sin xC2 cos x/3e
3x
.c
1
cos xCc
2
sin x/Ce
3x
.c
1
sin x Cc
2
cos x/. Therefore,y
0
.0/ D
3 ) 3 D 1 2 3c
1
C c
2
, so c
2
D 1, and y D e
x
.cos x 2 sin x/ C e
3x
.cos x C sin x/.
5.5.26. Let y D ue
3x
. Then
y
00
3y
0
C 2y D e
3x
.u
00
C 6u
0
C 9u/ 3.u
0
C 3u/ C 2u
D e
3x
.u
00
C 3u
0
C 2u/ D e
3x
Œ21 cos x .11 C 10x/ sin x
if u
00
C 3u
0
C 2u D 21 cos x .11 C 10x/ sin x. Now let
u
p
D .A
0
C A
1
x/ cos x C .B
0
C B
1
x/ sin xI then
u
0
p
D .A
1
C B
0
C B
1
x/ cos x C .B
1
A
0
A
1
x/ sin x
u
00
p
D .2B
1
A
0
A
1
x/ cos x .2A
1
C B
0
C B
1
x/ sin x; so
u
00
C 3u
0
C 2u D ŒA
0
C 3A
1
C 3B
0
C 2B
1
C .A
1
C 3B
1
/x cos x
CŒB
0
C 3B
1
3A
0
2A
1
C .B
1
3A
1
/x sin x
D 21 cos x .11 C 10x/ sin x if
A
1
C 3B
1
D 0
3A
1
C B
1
D 10
and
A
0
C 3B
0
C 3A
1
C 2B
1
D 21
3A
0
C B
0
2A
1
C3B
1
D 11
:
From the first two equations A
1
D 3, B
1
D 1. Substit uting these in last two equations yields and
solving for A
0
and B
0
yields A
0
D 2, B
0
D 4. Therefore, u
p
D .2 C 3x/ cos x C .4 x/ sin x and
y
p
D e
3x
Œ.2 C 3x/ cos x C .4 x/ sin x. The characteristic polynomi al of the complementary equati on
is p.r/ D r
2
3r C2 D .r 1/.r 2/, so fe
x
; e
2x
gis a fundamental set of solutions of the complementary
equation, and (A ) y D e
3x
Œ.2 C 3x/ cos x C.4 x/ sin x Cc
1
e
x
Cc
2
e
2x
is the general solution of the
nonhomogeneous equation. Differentiating (A) yields
y
0
D 3e
3x
Œ.2 C 3x/ cos x C .4 x/ sin x
Ce
3x
Œ.7 x/ cos x .3 C 3x/ sin x C c
1
e
x
C 2c
2
e
2x
:
Therefore,y.0/ D 0; y
0
.0/ D 6 ) 0 D 2 Cc
1
Cc
2
; 6 D 6 C7 Cc
1
C2c
2
, so c
1
Cc
2
D 2; c
1
C2c
2
D
7. Therefore, c
1
D 3, c
2
D 5, and y D e
3x
Œ.2 C 3x/ cos x C .4 x/ sin x C 3e
x
5e
2x
.
5.5.28. We must find parti cular solutions y
p
1
, y
p
2
, and y
p
3
of (A) y
00
C y D 4 cos x 2 sin x and (B)
y
00
Cy D xe
x
, and (C) y
00
Cy D e
x
, respectively. To find a particular solution of (A) we write
y
p
1
D Ax cos x C Bx sin xI t hen
y
0
p
1
D .A C Bx/ cos x C .B Ax/ sin x
y
00
p
1
D .2B Ax/ cos x .2A C Bx/ sin x; so
y
00
p
1
Cy
p
1
D 2B cos x 2A sin x D 4 cos x 2 sin x if 2B D 4, 2A D 2. Therefore, A D 1, B D 2,
and y
p
1
D x.cos x C 2 sin x/. To find a particu lar solution of (B) we write y D ue
x
. Then
y
00
C y D e
x
.u
00
C 2u
0
Cu/ C u
D e
x
.u
00
C 2u
0
C 2u/ D xe
x
70 Chapter 5
Linear Second Order Equations
if u
00
C 2u
0
C 2u D x. Now u
p
D A C Bx, where 2B C 2.A C Bx/ D x. Therefore, 2B D 1,
2A C 2B D 0, so B D
1
2
, A D
1
2
, u
p
D
1
2
.1 x/, and y
p
2
D
e
x
2
.1 x/. To find a particular
solution of (C) we write y
p
3
D Ae
x
. Then y
00
p
3
C y
p
3
D 2Ae
x
D e
x
if 2A D 1, so A D
1
2
and
y
p
3
D
e
x
2
Now y
p
D y
p
1
C y
p
2
C y
p
3
D x.cos x C 2 sin x/
e
x
2
.1 x/ C
e
x
2
.
5.5.30. We must fin d particular solution s y
p
1
, y
p
2
and y
p
3
of (A) y
00
2y
0
C 2y D 4xe
x
cos x, (B)
y
00
2y
0
C 2y D xe
x
, and (C) y
00
2y
0
C 2y D 1 C x
2
, respectively. To find a particular solution of
(A) we write y D ue
x
. Then y
00
2y
0
C2y D e
x
Œ.u
00
C 2u
0
C u/ 2.u
0
C u/ C 2u D e
x
.u
00
Cu/ D
4xe
x
cos x if u
00
C u D 4x cos x. Now let
u
p
D .A
0
x C A
1
x
2
/ cos x C .B
0
x C B
1
x
2
/ sin xI then
u
0
p
D
A
0
C .2A
1
C B
0
/x C B
1
x
2
cos x C
B
0
C .2B
1
A
0
/x B
1
x
2
sin x
u
00
p
D
2A
1
C 2B
0
.A
0
4B
1
/x A
1
x
2
cos x
C
2B
1
2A
0
.B
0
C4A
1
/x B
1
x
2
sin x; so
u
00
p
C u
p
D .2A
1
C 2B
0
C4B
1
x/ cos x C .2B
1
2A
0
4A
1
x/ sin x
D 4x cos x
if 4B
1
D 4, 4A
1
D 0, 2B
0
C 2A
1
D 0, 2A
0
C 2B
1
D 0. Therefore, A
1
D 0, B
1
D 1, A
0
D 1,
B
0
D 0, u
p
D x.cos x C x sin x/, and y
p
1
D xe
x
.cos x C x sin x/. To find a p articular solution of (B)
we write y D ue
x
. Then
y
00
2y
0
C 2y D e
x
.u
00
2u
0
C u/ 2.u
0
u/ C2u
D e
x
.u
00
4u
0
C 5u/ D xe
x
if u
00
4u
0
C 5u D x. Now u
p
D A C Bx where 4B C 5.A C Bx/ D x. Therefore, 5B D 1,
5A 4B D 0, B D
1
5
, A D
4
25
, u
p
D
1
25
.4 C 5x/, and y
p
2
D
e
x
25
.4 C 5x/. To find a particular
solution of (C) we write y
p
3
D A C Bx C Cx
2
. Then
y
00
p
3
2y
0
p
3
C 2y
p
3
D 2C 2.B C 2Cx/ C 2.A C Bx CCx
2
/
D .2A 2B C 2C / C .2B 4C /x C 2Cx
2
D 1 C x
2
if 2A2B C2C D 1, 2B 4C D 0, 2C D 1. Therefore,C D
1
2
, B D 1, A D 1, and y
p
3
D 1Cx C
x
2
2
.
Now y
p
D y
p
1
C y
p
2
C y
p
3
D xe
x
.cos x C x sin x/ C
e
x
25
.4 C 5x/ C 1 C x C
x
2
2
.
5.5.32. We must find particular solutions y
p
1
and y
p
2
of (A) y
00
4y
0
C4y D 6e
2x
and (B) y
00
4y
0
C4y D
25 si n x, respectively. To find a particular solution of (A), let y D ue
2x
. Then
y
00
4y
0
C 4y D e
2x
.u
00
C 4u
0
C 4u/ 4.u
0
C 2u/ C4u
D e
2x
u
00
D 6e
2x
if u
00
D 6. Integrating twice and taking the constant s of integration to be zero yields u
p
D 3x
2
, so
y
p
1
D 3x
2
e
2x
. To find a particular solut ion of (B), let y
p
2
D A cos x C B sin x. Then
y
00
p
2
4y
0
p
2
C 4y
p
2
D .A cos x C B sin x/ 4.A sin x C B cos x/
C4.A cos x C B sin x/
D .3A 4B/ cos x C .4A C 3B/ sin x D 25 sin x
Section 5.5
The Method of Undetermined Coefficients II
71
if 3A 4B D 0, 4A C 3B D 25. Therefore,A D 4, B D 3, and y
p
2
D 4 cos x C 3 sin x. Now
y
p
D y
p
1
C y
p
2
D 3x
2
e
2x
C 4 cos x C 3 sin x. The characteristic polynomial of the complementary
equation is p.r/ D r
2
4r C 4 D .r 2/
2
, so fe
2x
; xe
2x
g is a fundamental set of solution s of the
complementary equation. Therefore,(C) y D 3x
2
e
2x
C4 cos x C 3 sin x Ce
2x
.c
1
C c
2
x/ is the general
solution of the nonhomogeneous equation. Now y.0/ D 5 ) 5 D 4 Cc
1
, so c
1
D 1. Differentiating (C)
yields y
0
D 6e
2x
.x Cx
2
/4 sin x C3 cos x C2e
2x
.c
1
Cc
2
x/Cc
2
e
2x
, so y
0
.0/ D 3 ) 3 D 3 C2 Cc
2
.
Therefore,c
2
D 2, and y D .1 2x C 3x
2
/e
2x
C 4 cos x C 3 sin x.
5.5.34. We must find particular solutions y
p
1
and y
p
2
of (A) y
00
C 4y
0
C 4y D 2 cos 2x C 3 sin 2x
and (B) y
00
C 4y
0
C 4y D e
x
, respectively. To find a particular solution of (A) we write y
p
1
D
A cos 2x C B sin 2x. Then
y
00
p
1
C 4y
0
p
1
C 4y
p
1
D 4.A co s 2x C B sin 2x/ C 8.A sin 2x C B cos 2x/
C4.A cos 2x C B sin 2x/ D 8A sin 2x C 8B cos 2x
D 2 cos 2x C 3 sin 2x
if 8B D 2, 8A D 3. Therefore,A D
3
8
, B D
1
4
, and y
p
1
D
3
8
cos 2x C
1
4
sin 2x. To find a
particular solution of (B) we write y
p
2
D Ae
x
. Then y
00
p
2
C 4y
0
p
2
C 4y
p
2
D A.1 4 C 4/e
x
D
Ae
x
D e
x
if A D 1. Therefore,y
p
2
D e
x
. Now y
p
D y
p
1
C y
p
2
D
3
8
cos 2x C
1
4
sin 2x C e
x
.
The characteristic polynomial o f the complementary equation is p.r/ D r
2
C 4r C 4 D .r 2/
2
,
so fe
2x
; xe
2x
g is a fundamen tal set of solutions of the complementary equ ation. Therefore,(C) y D
3
8
cos 2x C
1
4
sin 2x C e
x
Ce
2x
.c
1
Cc
2
x/ is the general solution of the nonhomogeneous equation.
Now y.0/ D 1 ) 1 D
3
8
C 1 C c
1
, so c
1
D
13
8
. Differentiating (C) yields y
0
D
3
4
sin 2x C
1
2
cos 2x e
x
2e
2x
.c
1
Cc
2
x/Cc
2
e
2x
, so y
0
.0/ D 2 ) 2 D
1
2
12c
1
Cc
2
. Therefore,c
2
D
3
4
,
and y D
3
8
cos 2x C
1
4
sin 2x C e
x
13
8
e
2x
3
4
xe
2x
.
5.5.36. (a), (b), and (c) require only routine manipulations. (d) The coefficients o f sin !x in y
0
p
, y
00
p
,
ay
00
p
Cby
0
p
Ccy
p
, and y
00
p
C!
2
y
p
can be obtained by replacing A b y B and B by A in the corresponding
coefficients of cos !x.
5.5.38. Let y D ue
x
. Then
ay
00
C by
0
C cy D e
x
a.u
00
C2u
0
C
2
u/ C b.u
0
C u/ C cu
D e
x
au
00
C .2a C b/u
0
C .a
2
C b C c/u
D e
x
au
00
C p
0
./u
0
C p./u
D e
x
.P.x/ cos !x C Q.x/ sin !x/ if
(A) au
00
Cp
0
./u
0
Cp./uP .x/ cos !x CQ.x/ sin !x, where p.r/ D ar
C
br Cc is that characteristic
polynomial of the complementary equation (B) ay
00
C by
0
C cy D 0. If e
x
cos !x and e
x
sin !x are
not solutions of (B), then cos !x and sin !x are not solutions of the complementary equation f or (A).
Then Theorem 5.5.1 implies that (A) has a particular solution
u
p
D .A
0
C A
1
x C C A
k
x
k
/ cos !x C .B
0
CB
1
x C C B
k
x
k
/ sin !x;
and y
p
D u
p
e
x
is a particul ar solution of the stated form for the given equation. If e
x
cos !x and
e
x
sin !x are solutions of (B ), then cos !x and sin !x are sol utions of the compl ementary equation for
72 Chapter 5
Linear Second Order Equations
(A). Then Theorem 5.5.1 implies that (A) has a particular solution
u
p
D .A
0
x C A
1
x
2
C C A
k
x
kC1
/ cos !x C .B
0
x C B
1
x
2
C C B
k
x
kC1
/ sin !x;
and y
p
D u
p
e
x
is a particular solution of t he stated form for the given equation.
5.5.40. (a) Let y D
R
x
2
cos x dx; then y
0
D x
2
cos x Now let
y
p
D .A
0
CA
1
x C A
2
x
2
/ cos x C .B
0
CB
1
x C B
2
x
2
/ sin xI then
y
0
p
D
A
1
C B
0
C .2A
2
C B
1
/x C B
2
x
2
cos x
C
B
1
A
0
C .2B
2
A
1
/x A
2
x
2
sin x D x
2
cos x if
(i)
B
2
D 1
A
2
D 0
; (ii)
B
1
C2A
2
D 0
A
1
C 2B
2
D 0
; (iii)
B
0
C A
1
D 0
A
0
C B
1
D 0
:
Solving these equations yields A
2
D 0, B
2
D 1, A
1
D 2, B
1
D 0, A
0
D 0, B
0
D 2. Therefore,y
p
D
2x cos x .2 x
2
/ sin x and y D 2x cos x .2 x
2
/ sin x C c.
(b) Let y D
R
x
2
e
x
cos x dx D ue
x
; th en y
0
D .u
0
C u/e
x
D x
2
e
x
cos x if u
0
C u D x
2
cos x. Now
let
u
p
D .A
0
C A
1
x C A
2
x
2
/ cos x C .B
0
C B
1
x C B
2
x
2
/ sin xI then
u
0
p
D
A
1
C B
0
C .2A
2
C B
1
/x CB
2
x
2
cos x
C
B
1
A
0
C .2B
2
A
1
/x A
2
x
2
sin x; so
u
00
p
C u
p
D
A
0
CA
1
C B
0
C .A
1
C 2A
2
C B
1
/x C .A
2
C B
2
/x
2
cos x
C
B
0
C B
1
A
0
C .B
1
C 2B
2
A
1
/x C .B
2
A
2
/x
2
sin x
D x
2
cos x if
(i)
A
2
C B
2
D 1
A
2
C B
2
D 0
; (ii)
A
1
C B
1
C 2A
2
D 0
A
1
C B
1
C 2B
2
D 0
;
(iii)
A
0
C B
0
C A
1
D 0
A
0
C B
0
C B
1
D 0
:
From (i), A
2
D
1
2
, B
2
D
1
2
. Substituting these into (ii ) and solving for A
1
and B
1
yields A
1
D 0,
B
1
D 1. Substituting these into (iii) and solving for A
0
and B
0
yields A
0
D
1
2
, B
0
D
1
2
. Therefore,
u
p
D
1
2
.1 x
2
/ cos x .1 x/
2
sin x
and y D
e
x
2
.1 x
2
/ cos x .1 x/
2
sin x
.
(c) Let y D
R
xe
x
sin 2x dx D ue
x
; then y
0
D .u
0
u/e
x
D xe
x
sin 2x if u
0
u D x sin 2x.
Now let
u
p
D .A
0
C A
1
x/ cos 2x C .B
0
C B
1
x/ sin 2xI then
u
0
p
D Œ.A
1
C 2B
0
/ C 2B
1
x cos 2x C Œ.B
1
2A
0
/ 2A
1
x sin 2x; so
u
00
p
u
p
D ŒA
0
C A
1
C 2B
0
.A
1
2B
1
/x cos 2x
CŒB
0
C B
1
2A
0
.B
1
C 2A
1
/x sin 2x D x sin 2x if
Section 5.5
The Method of Undetermined Coefficients II
73
(i)
A
1
C 2B
1
D 0
2A
1
B
1
D 1
; (ii)
A
0
C 2B
0
CA
1
D 0
2A
0
B
0
C B
1
D 0
:
From (i), A
1
D
2
5
, B
1
D
1
5
. Su bstituting these into (ii) and solving for A
0
and B
0
yields A
0
D
4
25
,
B
0
D
3
25
. Therefore,
u
p
D
1
25
Œ.4 C 10x/ cos 2x .3 5x/ sin 2x C c and
y
p
D
e
x
25
Œ.4 C 10x/ cos 2x .3 5x/ sin 2x C c:
(d) Let y D
R
x
2
e
x
sin x dx D ue
x
; then y
0
D .u
0
u/e
x
D x
2
e
x
sin x if u
0
u D x
2
sin x.
Now let
u
p
D .A
0
C A
1
x C A
2
x
2
/ cos x C .B
0
C B
1
x C B
2
x
2
/ sin xI then
u
0
p
D
A
1
C B
0
C .2A
2
C B
1
/x CB
2
x
2
cos x
C
B
1
A
0
C .2B
2
A
1
/x A
2
x
2
sin x; so
u
00
p
u
p
D
A
0
C A
1
C B
0
.A
1
2A
2
B
1
/x .A
2
B
2
/x
2
cos x
C
B
0
C B
1
A
0
.B
1
2B
2
C A
1
/x .B
2
C A
2
/x
2
sin x
D x
2
sin x i f
(i)
A
2
C B
2
D 0
A
2
B
2
D 1
; (ii)
A
1
C B
1
C 2A
2
D 0
A
1
B
1
C 2B
2
D 0
;
(iii)
A
0
C B
0
C A
1
D 0
A
0
B
0
C B
1
D 0
:
From (i), A
2
D
1
2
, B
2
D
1
2
. Substituting these into (ii ) and solving for A
1
and B
1
yields A
1
D 1,
B
1
D 0. Substituting these into (iii) and solving for A
0
and B
0
yields A
0
D
1
2
, B
0
D
1
2
. Therefore,
u
p
D
e
x
2
.1 C x/
2
cos x .1 x
2
/ sin x
and
y D
e
x
2
.1 C x/
2
cos x .1 x
2
/ sin x
C c:
(e) Let y D
R
x
3
e
x
sin x dx D ue
x
; th en y
0
D .u
0
Cu/e
x
D x
3
e
x
sin x i f u
0
Cu D x
3
sin x. Now let
u
p
D .A
0
C A
1
x C A
2
x
2
C A
3
x
3
/ cos x C .B
0
C B
1
x C B
2
x
2
C B
3
x
3
/ sin xI then
u
0
p
D
A
1
C B
0
C .2A
2
C B
1
/x C.3A
3
C B
2
/x
2
C B
3
x
3
cos x
C
B
1
A
0
C .2B
2
A
1
/x C .3B
3
A
2
/x
2
A
3
x
3
sin x; so
u
00
p
C u
p
D ŒA
0
C A
1
C B
0
C .A
1
C 2A
2
C B
1
/x
C.A
2
C 3A
3
C B
2
/x
2
C .A
3
C B
3
/x
3
cos x
CŒB
0
C B
1
A
0
C .B
1
C 2B
2
A
1
/x
C.B
2
C 3B
3
A
2
/x
2
C .B
3
A
3
/x
3
sin x D x
3
sin x if
74 Chapter 5
Linear Second Order Equations
(i)
A
3
C B
3
D 0
A
3
C B
3
D 1
; (ii)
A
2
C B
2
C 3A
3
D 0
A
2
C B
2
C 3B
3
D 0
;
(iii)
A
1
C B
1
C 2A
2
D 0
A
1
C B
1
C 2B
2
D 0
; (iv)
A
0
C B
0
C A
1
D 0
A
0
C B
0
C B
1
D 0
:
From (i), A
3
D
1
2
, B
3
D
1
2
. Substitutin g these into (ii) and solving for A
2
and B
2
yields A
2
D
3
2
,
B
2
D 0. Substituting these into (iii) and solving for A
1
and B
1
yields A
1
D
3
2
, B
1
D
3
2
. Substi tuting
these i nto (iv) and solving for A
0
and B
0
yields A
0
D 0, B
0
D
3
2
. Therefore,
u
p
D
1
2
x.3 3x C x
2
/ cos x .3 3x C x
3
/ sin x
and
y D
e
x
2
x.3 3x C x
2
/ cos x .3 3x C x
3
/ sin x
C c:
(f) Let y D
R
e
x
Œx cos x .1 C 3x/ sin x dx D ue
x
; then y
0
D .u
0
Cu/e
x
D e
x
Œx cos x .1 C 3x/ sin x
if u
0
C u D x cos x .1 C 3x/ sin x. Now let
u
p
D .A
0
C A
1
x/ cos x C .B
0
C B
1
x/ sin xI th en
u
0
p
D ŒA
1
C B
0
CB
1
x cos x C ŒB
1
A
0
A
1
x sin x; so
u
00
p
C u
p
D ŒA
0
C A
1
C B
0
C .A
1
C B
1
/x cos x
CŒB
0
C B
1
A
0
C .B
1
A
1
/x sin x
D x cos x .1 C 3x/ sin x if
(i)
A
1
C B
1
D 1
A
1
C B
1
D 3
; (ii)
A
0
C B
0
C A
1
D 0
A
0
C B
0
C B
1
D 1
:
From (i) , A
1
D 2, B
1
D 1. Substi tuting these into (ii) and solving for A
0
and B
0
yields A
0
D 1, B
0
D
1. Therefore, u
p
D Œ.1 2x/ cos x C .1 C x/ sin x and y D e
x
Œ.1 2x/ cos x C .1 C x/ sin xC
c.
(g) Let y D
R
e
x
.1 C x
2
/ cos x C .1 x
2
/ sin x
dx D ue
x
; th en
y
0
D .u
0
u/e
x
D e
x
.1 C x
2
/ cos x C .1 x
2
/ sin x
if u
0
u D .1 C x
2
/ cos x C .1 x
2
/ sin x. Now let
u
p
D .A
0
C A
1
x C A
2
x
2
/ cos x C .B
0
C B
1
x C B
2
x
2
/ sin xI then
u
0
p
D
A
1
C B
0
C .2A
2
C B
1
/x CB
2
x
2
cos x
C
B
1
A
0
C .2B
2
A
1
/x A
2
x
2
sin x; so
u
00
p
u
p
D
A
0
C A
1
C B
0
.A
1
2A
2
B
1
/x .A
2
B
2
/x
2
cos x
C
B
0
C B
1
A
0
.B
1
2B
2
C A
1
/x .B
2
C A
2
/x
2
sin x
D .1 C x
2
/ cos x C .1 x
2
/ sin x if
(i)
A
2
C B
2
D 1
A
2
B
2
D 1
; (ii)
A
1
C B
1
C 2A
2
D 0
A
1
B
1
C 2B
2
D 0
;
Section 5.6
Reduction of Order
75
(iii)
A
0
C B
0
C A
1
D 1
A
0
B
0
C B
1
D 1
:
From (i), A
2
D 0, B
2
D 1. Substituting these into (ii) and so lving for A
1
and B
1
yields A
1
D 1,
B
1
D 1. Substituting these into (iii) and solving for A
0
and B
0
yields A
0
D 0, B
0
D 0. Therefore,u
p
D
x cos x C x.1 C x/ sin x and y D e
x
Œx cos x C x.1 C x/ sin x C c.
5.6 REDUCTION OF ORDER
(NOTE: The term uy
00
1
is indicated by " in some of the following solutions, where y
00
1
is complicated.
Since this term always drops out of the differential equation for u, it is not necessary to include it.)
5.6.2. If y D ux, then y
0
D u
0
x C u and y
00
D u
00
x C 2u
0
, so x
2
y
00
C xy
0
y D x
3
u
00
C 3x
2
u
0
D
4
x
2
if u
0
D ´, w here (A) ´
0
C
3
x
´ D
4
x
5
. Since
Z
3
x
dx D 3 ln jxj , ´
1
D
1
x
3
is a solution of the
complementary equation for (A). Therefore,the solutions of (A) are of th e form (B) ´ D
v
x
3
, where
v
0
x
3
D
4
x
5
, so v
0
D
4
x
2
. Hence, v D
4
x
C C
1
; u
0
D ´ D
4
x
4
C
C
1
x
3
(see (B)); u D
4
3x
3
C
1
2x
2
C C
2
;
y D ux D
4
3x
2
C
1
2x
C C
2
x, o r y D
4
3x
2
C c
1
x C
c
2
x
. As a byproduct, fx; 1=xg is a fundamental set
of solutions of the complementary equation.
5.6.4. If y D ue
2x
, t hen y
0
D .u
0
C 2u/e
2x
and y
00
D .u
00
C 4u
0
C 4u/e
2x
, so y
00
3y
0
C 2y D
.u
00
C u
0
/e
2x
D
1
1 C e
x
if u
0
D ´, where (A) ´
0
C ´ D
e
2x
1 C e
x
. Since ´
1
D e
x
is a solution of
the complementary equation for (A), the solutions of (A) are of the form (B) ´ D ve
x
, where v
0
e
x
D
e
2x
1 C e
x
, so v
0
D
e
x
1 C e
x
. Hence, v D ln.1 C e
x
/ C C
1
; u
0
D ´ D e
x
ln.1 C e
x
/ C C
1
e
x
(see (B)); u D .1 Ce
x
/ ln.1 Ce
x
/ 1 e
x
C
1
e
x
CC
2
; y D ue
2x
D .e
2x
Ce
x
/ ln.1 Ce
x
/
.C
1
C 1/e
x
C .C
2
1/e
2x
, or y D .e
2x
C e
x
/ ln.1 C e
x
/ C c
1
e
2x
C c
2
e
x
. As a byproduct, fe
2x
; e
x
g
is a fundamental set of solutions of the complementary equation.
5.6.6. If y D ux
1=2
e
x
, then y
0
D u
0
x
1=2
e
x
Cu
x
1=2
C
x
1=2
2
!
e
x
and y
00
D u
00
x
1=2
e
x
C2u
0
x
1=2
C
x
1=2
2
!
e
x
C
so 4x
2
y
00
C .4x 8x
2
/y
0
C .4x
2
4x 1/y D e
x
.4x
5=2
u
00
C 8x
3=2
u
0
/ D 4x
1=2
e
x
.1 C 4x/ if
u
0
D ´, where (A) ´
0
C
2
x
´ D
1 C 4x
x
2
. Since
Z
2
x
dx D 2 ln jxj, ´
1
D
2
x
2
is a solution of the
complementary equation for (A). Therefore,the solutions of (A) are of th e form (B) ´ D
v
x
2
, where
v
0
x
2
D
1 C 4x
x
2
, so v
0
D 1 C 4x. Hence, v D x C 2x
2
C C
1
; u
0
D ´ D
1
x
C 2 C
C
1
x
2
(see
(B)); u D ln x C 2x
C
1
x
C C
2
; y D ux
1=2
e
x
D e
x
.2x
3=2
C x
1=2
ln x C
1
x
1=2
C C
2
x
1=2
/, or
y D e
x
.2x
3=2
C x
1=2
ln x C c
1
x
1=2
C c
2
x
1=2
/. As a byproduct, fx
1=2
e
x
; x
1=2
e
x
g is a fundamental
set o f solutions of t he complementary equation.
5.6.8. If y D ue
x
2
, then y
0
D u
0
e
x
2
2xue
x
2
and y
00
D u
00
e
x
2
4xu
0
e
x
2
C, so y
00
C4xy
0
C
.4x
2
C 2/y D u
00
e
x
2
D 8e
x.xC2/
D 8e
x
2
e
2x
if u
00
D 8e
2x
. Therefore,u
0
D 4e
2x
C C
1
;
u D 2e
2x
CC
1
x CC
2
, and y D ue
x
2
D e
x
2
.2e
2x
CC
1
x CC
2
/, or y D e
x
2
.2e
2x
Cc
1
Cc
2
x/.
As a byproduct, fe
x
2
; xe
x
2
g is a fundamental set of solutions of the complementary equation.
76 Chapter 5
Linear Second Order Equations
5.6.10. If y D uxe
x
, then y
0
D u
0
xe
x
ue
x
.x 1/ and y
00
D u
00
xe
x
2u
0
e
x
.x 1/ C ,
so x
2
y
00
C 2x.x 1/y
0
C .x
2
2x C 2/y D x
3
u
00
D x
3
e
2x
if u
00
D e
3x
. Therefore,u
0
D
e
3x
3
C C
1
;
u D
e
3x
9
CC
1
x CC
2
, and y D uxe
x
D
xe
2x
9
Cxe
x
.C
1
x CC
2
/, or y D
xe
2x
9
Cxe
x
.c
1
Cc
2
x/.
As a byproduct, fxe
x
; x
2
e
x
g is a fundamental set of solutions of the complementary equation .
5.6.12. If y D ue
x
, then y
0
D .u
0
C u/e
x
and y
00
D .u
00
C 2u
0
C u/e
x
, so .1 2x/y
00
C 2y
0
C
.2x 3/y D e
x
Œ.1 2x/u
00
C .4 4x/u
0
D .1 4x C 4x
2
/e
x
if u
0
D ´, where (A) ´
0
C
4 4x
1 2x
´ D
1 2x. Since
Z
4 4x
1 2x
dx D
Z
2 C
2
1 2x
dx D 2x ln j1 2xj, ´
1
D .1 2x/e
2x
is
a sol ution of the complementary equation for (A). Therefore,the solutions of (A) are of t he form (B)
´ D v.1 2x/e
2x
, where v
0
.1 2x/e
2x
D .1 2x/, so v
0
D e
2x
. Hence, v D
e
2x
2
C C
1
;
u
0
D ´ D
1
2
C C
1
e
2x
.1 2x/ (see (B)); u D
.2x 1/
2
8
C C
1
xe
2x
C C
2
; y D ue
x
D
.2x 1/
2
e
x
8
CC
1
xe
x
CC
2
e
x
, o r y D
.2x 1/
2
e
x
8
Cc
1
e
x
Cc
2
xe
x
. As a byproduct, fe
x
; xe
x
g
is a fundamental set of solutions of the complementary equation.
5.6.14. If y D ue
x
, then y
0
D .u
0
u/e
x
and y
00
D .u
00
2u
0
C u/e
x
, so 2xy
00
C .4x C
1/y
0
C .2x C 1/y D e
x
.2xu
00
C u
0
/ D 3x
1=2
e
x
if u
0
D ´, where (A) ´
0
C
1
2x
´ D
3
2
x
1=2
. Sin ce
Z
1
2x
dx D
1
2
ln jxj, ´
1
D x
1=2
is a solution o f the complementary equati on for (A). Therefore,the
solutions of (A) are o f the form (B) ´ D vx
1=2
, where v
0
x
1=2
D
3
2
x
1=2
, so v
0
D
3
2
. Hence,
v D
3x
2
C C
1
; u
0
D ´ D
3
2
x
1=2
C C
1
x
1=2
(see (B)); u D x
3=2
C 2C
1
x
1=2
C C
2
; y D ue
x
D
e
x
.x
3=2
C 2C
1
x
1=2
C C
2
/, or y D e
x
.x
3=2
C c
1
C c
2
x
1=2
/ As a byproduct, is a fe
x
; x
1=2
e
x
g
fundamental set of solutions of the complementary equation.
5.6.16. If y D ux
1=2
, then y
0
D u
0
x
1=2
C
u
2x
1=2
and y
00
D u
00
x
1=2
C
u
0
x
1=2
C so 4x
2
y
00
4x.x C 1/y
0
C .2x C 3/y D 4x
5=2
.u
00
u
0
/ D 4x
5=2
e
2x
if u
0
D ´, where (A) ´
0
´ D e
2x
. Since
´
1
D e
x
is a solution of the complementary equatio n for (A), the solutions of (A) are of the form (B)
´ D ve
x
, wher e v
0
e
x
D e
2x
, so v
0
D e
x
. H ence, v D e
x
C C
1
; u
0
D ´ D e
2x
C C
1
e
x
(see (B));
u D
e
2x
2
C C
1
e
x
C C
2
; y D ux
1=2
D x
1=2
e
2x
2
C C
1
e
x
C C
2
, or y D x
1=2
e
2x
2
C c
1
Cc
2
e
x
.
As a byproduct, fx
1=2
; x
1=2
e
x
g is a fundamental set of solutions of the complementary equation.
5.6.18. If y D ue
x
, then y
0
D .u
0
C u/e
x
and y
00
D .u
00
C 2u
0
C u/e
x
, so xy
00
C .2 2x/y
0
C
.x 2/y D e
x
.xu
00
C 2u
0
/ D 0 if
u
00
u
0
D
2
x
; ln ju
0
j D 2 ln jxj C k; u
0
D
C
1
x
2
; u D
C
1
x
C C
2
.
Therefore,y D ue
x
D e
x
C
1
x
C C
2
is the general solution, and fe
x
; e
x
=xg is a f undamental set of
solutions.
5.6.20. If y D u ln jxj, then y
0
D u
0
ln jxj C
u
x
and y
00
D u
00
ln jxj C
2u
0
x
, so x
2
.ln jxj/
2
y
00
.2x ln jxj/y
0
C .2 C ln jxj/y D x
2
.ln j xj/
3
u
00
D 0 if u
00
D 0; u
0
D C
1
; u D C
1
x C C
2
. Therefore,y D
u ln jxj D .C
1
x CC
2
/ ln jxj is the general solution, and fln jxj; x ln jxjg is a fundamental set of sol utions.
Section 5.6
Reduction of Order
77
5.6.22. If y D ue
x
, then y
0
D u
0
e
x
Cue
x
and y
00
D u
00
e
x
C2u
0
e
x
Cue
x
, so xy
00
.2xC2/y
0
C.xC2/y D
e
x
.xu
00
2u
0
/ D 0 if
u
00
u
0
D
2
x
; ln ju
0
j D 2 ln jxj C k; u
0
D C
1
x
2
; u D
C
1
x
3
3
C C
2
. Therefore,
y D ue
x
D
C
1
x
3
3
C C
2
e
x
is the general solution, and fe
x
; x
3
e
x
g is a fundamental set of solutions.
5.6.24. If y D ux sin x, then y
0
D u
0
x sin x C u.x cos x C sin x/ and y
00
D u
00
x sin x C 2u
0
.x cos x C
sin x/C, so x
2
y
00
2xy
0
C.x
2
C2/y D .x
3
sin x/u
00
C2.x
3
cos x/u
0
D 0 if
u
00
u
0
D
2 cos x
sin x
; ln ju
0
j D
2 ln jsin xjCk; u
0
D
C
1
sin
2
x
; u D C
1
cot x CC
2
. Therefore, y D ux sin x D x.C
1
cos x CC
2
sin x/
is the general solution, and fx sin x; x cos xg is a fun damental set of solutions.
5.6.26. If y D ux
1=2
, then y
0
D u
0
x
1=2
C
u
2x
1=2
and y
00
D u
00
x
1=2
C
u
0
x
1=2
C so 4x
2
.sin x/y
00
4x.x cos x Csin x/y
0
C.2x cos x C3 sin x/y D 4x
5=2
.u
00
sin x u
0
cos x/ D 0 if
u
00
u
0
D
cos x
sin x
; ln ju
0
j D
ln jsin xj C k; u
0
D C
1
sin x; u D C
1
cos x C C
2
. Therefore,y D ux
1=2
D .C
1
cos x C C
2
/x
1=2
is
the general solution, and fx
1=2
; x
1=2
cos xg is a fundamental set of solutions.
5.6.28. If y D
u
x
, then y
0
D
u
0
x
u
x
2
and y
00
D
u
00
x
2u
0
x
2
C, so .2x C1/xy
00
2.2x
2
1/y
0
4.x C
1/y D .2x C 1/u
00
.4x C 4/u
0
D 0 if
u
00
u
0
D
4x C 4
2x C 1
D 2 C
2
2x C 1
; ln ju
0
j D 2x C ln j2x C 1jCk;
u
0
D C
1
.2x C 1/e
2x
; u D C
1
xe
2x
C C
2
. Therefore,y D
u
x
D C
1
e
2x
C
C
2
x
is the general solution, and
f1=x; e
2x
g is a fundamental set of solutions.
5.6.30. If y D ue
2x
, then y
0
D .u
0
C 2u/e
2x
and y
00
D .u
00
C 4u
0
C 4u/e
2x
, so xy
00
.4x C 1/y
0
C
.4x C 2/y D e
2x
.xu
00
u
0
/ D 0 if
u
00
u
0
D
1
x
; ln ju
0
j D ln jxj C k; u
0
D C
1
x; u D
C
1
x
2
2
C C
2
.
Therefore, y D ue
2x
D e
2x
C
1
x
2
2
C C
2
is the general solution, and fe
2x
; x
2
e
2x
g is a fundamental
set o f solutions.
5.6.32. If y D ue
2x
, then y
0
D .u
0
C 2u/e
2x
and y
00
D .u
00
C 4u
0
C 4u/e
2x
, so .3x 1/y
00
.3x C 2/y
0
.6x 8/y D e
2x
Œ.3x 1/u
00
C .9x 6/u
0
D 0 if
u
00
u
0
D
9x 6
3x 1
D 3 C
3
3x 1
.
Therefore,ln ju
0
j D 3x Clnj3x 1jCk, so u
0
D C
1
.3x 1/e
3x
, u D C
1
xe
3x
CC
2
. Therefore,the
general solution is y D ue
2x
D C
1
xe
x
C C
2
e
2x
, or (A) y D c
1
e
2x
C c
2
xe
x
. Now y.0/ D 2 )
c
1
D 2. Differentiating (A) yields y
0
D 2c
1
e
2x
Cc
2
.e
x
xe
x
/. Now y
0
.0/ D 3 ) 3 D 2c
1
Cc
2
, so
c
2
D 1 and y D 2e
2x
xe
x
.
5.6.34. If y D ux, then y
0
D u
0
x Cu and y
00
D u
00
x C2u
0
, so x
2
y
00
C2xy
0
2y D x
3
u
00
C4x
2
u
0
D x
2
if
u
0
D ´, where (A) ´
0
C
4
x
´ D
1
x
. Since
Z
4
x
dx D 4 ln jxj, ´
1
D
1
x
4
is a solution of the complementary
equation for (A). Therefore,the solutions of (A) are of the form (B) ´ D
v
x
4
, where
v
0
x
4
D
1
x
, so v
0
D x
3
.
Hence, v D
x
4
4
CC
1
; u
0
D ´ D
1
4
C
C
1
x
4
(see (B) ); u D
x
4
C
1
3x
3
CC
2
. Therefore,the general solution is
y D ux D
x
2
4
C
1
3x
2
CC
2
x, or (C) y D
x
2
4
Cc
1
x C
c
2
x
2
. Differentiating (C) yields y
0
D
x
2
Cc
1
2
c
2
x
3
:
78 Chapter 5
Linear Second Order Equations
Now y.1/ D
5
4
; y
0
.1/ D
3
2
) c
1
C c
2
D 1; c
1
2c
2
D 1, so c
1
D 1, c
2
D 0 and y D
x
2
4
Cx.
5.6.36. If y D uy
1
, then y
0
D u
0
y
1
Cuy
0
1
and y
00
D u
00
y
1
C2u
0
y
0
1
Cuy
00
1
, so y
00
Cp
1
.x/y
0
Cp
2
.x/y D
y
1
u
00
C .2y
0
1
C p
1
y
1
/u
0
D 0 if u is any fu nction such that (B)
u
00
u
0
D 2
y
0
1
y
1
p
1
. If ln ju
0
.x/j D
2 ln jy
1
.x/j
Z
x
x
0
p
1
.t/ dt, then u satisfies (B); therefore, if (C) u
0
.x/ D
1
y
2
1
.x/
exp
Z
x
x
0
p
1
.s/ ds
,
then u satisfies (B). Since u.x/ D
Z
x
x
0
1
y
2
1
.t/
exp
Z
t
x
0
p
1
.s/ds
satisfies (C), y
2
D uy
1
is a solution
of (A) on .a; b/. Since
y
2
y
1
D u is noncon stant, Theorem 5.1.6 implies that fy
1
; y
2
g is a fundamental set
of solutions of (A) on .a; b/.
5.6.38. (a ) The associated linear equation is ( A ) ´
00
C k
2
´ D 0, with characteristic polynomial p.r/ D
r
2
Ck
2
. The general solution of (A) is ´ D c
1
cos kx Cc
2
sin kx. Since ´
0
D kc
1
sin kx Ckc
2
cos kx,
y D
´
0
´
D
kc
1
sin kx C kc
2
cos kx
c
1
cos kx C c
2
sin kx
.
(b) The associated linear equati on is (A) ´
00
3´
0
C D 0, with characteristic polynomial p.r/ D
r
2
3r C2 D .r 1/.r 2/. The general solution of (A) is ´ D c
1
e
x
Cc
2
e
2x
. Since ´
0
D c
1
e
x
Cc
2
e
2x
,
y D
´
0
´
D
c
1
C 2c
2
e
x
c
1
C c
2
e
x
.
(c) The associated linear equation is (A) ´
00
C
0
D 0, wit h characteristic polynomial p.r/ D r
2
C
5r 6 D .r C6/.r 1/. The general solution of (A) is ´ D c
1
e
6x
Cc
2
e
x
. Since ´
0
D 6c
1
e
6x
Cc
2
e
x
,
y D
´
0
´
D
6c
1
C c
2
e
7x
c
1
C c
2
e
7x
.
(d) The associated l inear equation is (A ) ´
00
C
0
C D 0, with characteristic polynomial p.r/ D
r
2
C 8r C 7 D .r C 7/.r C 1/. The general solution of (A) is ´ D c
1
e
7x
C c
2
e
x
. Since ´
0
D
7c
1
e
7x
2c
2
e
x
, y D
´
0
´
D
7c
1
C c
2
e
6x
c
1
C c
2
e
6x
.
(e) The associated linear equation is (A) ´
00
C14´
0
C50´ D 0, with characteristic polynomial p.r / D
r
2
C 14r C 50 D .r C 7/
2
C 1. The general solution of (A) is ´ D e
7x
.c
1
cos x C c
2
sin x/. Since
´
0
D 7e
7x
.c
1
cos x Cc
2
sin x/ Ce
7x
.c
1
sin x Cc
2
cos x/ D .7c
1
c
2
/ cos x .c
1
C7c
2
/ sin x,
y D
´
0
´
D
.7c
1
c
2
/ cos x C .c
1
C 7c
2
/ sin x
c
1
cos x C c
2
sin x
.
(f) The given equation is equivalent to (A ) y
0
C y
2
1
6
y
1
6
D 0. The associated li near equatio n is
(B) ´
00
1
6
´
0
1
6
´ D 0, with characteristic polynomial p.r/ D r
2
1
6
r
1
6
D
r C
1
3
r
1
2
.
The general solu tion of (B) is ´ D c
1
e
x=3
C c
2
e
x=2
. Since ´
0
D
c
1
3
e
x=3
C
c
2
2
e
x=2
, y D
´
0
´
D
2c
1
C 3c
2
e
5x=6
6.c
1
C c
2
e
5x=6
/
.
(g) The given equation is equivalent to (A ) y
0
Cy
2
1
3
y C
1
36
D 0. The associated linear equation is
(B) ´
00
1
3
´
0
C
1
36
´ D 0, with characteristic polynomial p.r/ D r
2
1
3
r C
1
36
D
r
1
6
2
. The general
solution of (B) is ´ D e
x=6
.c
1
C c
2
x/. Since ´
0
D
e
x=6
6
.c
1
C c
2
x/ C c
2
e
x=6
D
e
x=6
6
.c
1
C c
2
.x C 6//,
Section 5.7
Variation of Parameters
79
y D
´
0
´
D
c
1
C c
2
.x C 6/
6.c
1
C c
2
x/
.
5.6.40. (a) Suppose that ´ is a solution of (B) and let y D
´
0
r´
. Then (D )
´
00
r´
C
p.x/
r
0
.x/
r.x/
yCq.x/ D
0 and y
0
D
´
00
r´
1
r
´
0
´
2
r
0
´
0
r
2
´
D
´
00
r´
ry
2
r
0
r
y, so
´
00
r´
D y
0
C ry
2
C
r
0
r
y. Therefore, (D)
implies th at y satisfies (A). Now suppose that y is a solution of (A) and let ´ be any function such that
´
0
D ry´. Then ´
00
D r
0
y´ C ry
0
´ C ry´
0
D
r
0
r
´
0
C .y
0
C ry
2
/r´ D
r
0
r
´
0
.p.x/y C q.x//r´, so
´
00
r
0
r
´
0
C p.x/ry´ C q.x/r´ D 0, which implies that ´ satisfies (B), since ry´ D ´
0
.
(b) If f´
1
; ´
2
g is a fundamental set of solutions of (B) on .a; b/, then ´ D c
1
´
1
C c
2
´
2
is the general
solution of (B) on .a; b/. This and (a) imply that (C) is the general solution of ( A) on .a; b/.
5.7 VARIATION OF PAR AMETERS
5.7.2. ( A) y
p
D u
1
cos 2x C u
2
sin 2x;
u
0
1
cos 2x C u
0
2
sin 2x D 0 (B)
2u
0
1
sin 2x C 2u
0
2
cos 2x D sin 2x sec
2
x: (C)
Multiplying (B) by 2 sin 2x and (C) by cos 2x and adding the resulting equations yields 2u
0
2
D tan 2x,
so u
0
2
D
tan 2x
2
. Then (B) implies that u
0
1
D u
0
2
tan.2x/ D
tan
2
2x
2
D
1 sec
2
2x
2
. Therefore,u
1
D
x
2
tan 2x
4
and u
2
D
ln jcos 2xj
4
. Now (A) yields y
p
D
sin 2x ln jcos 2xj
4
C
x cos 2x
2
sin 2x
4
.
Since sin 2x satisfies the complementary equation we redefine y
p
D
sin 2x ln jcos 2xj
4
C
x cos 2x
2
.
5.7.4. ( A) y
p
D u
1
e
x
cos x C u
2
e
x
sin x;
u
0
1
e
x
cos x C u
0
2
e
x
sin x D 0 (B)
u
0
1
.e
x
cos x e
x
sin x/ C u
0
2
.e
x
sin x C e
x
cos x/ D 3e
x
sec x: (C)
Subtr acti ng (B) from (C) and cancelling e
x
from the resulting equations yields
u
0
1
cos x C u
0
2
sin x D 0 (D)
u
0
1
sin x C u
0
2
cos x D 3 sec x: (E)
Multiplying (D) by sin x and (E) by cos x and adding th e results yields u
0
2
D 3. From (D), u
0
1
D
u
0
2
tan x D 3 tan x. Therefore u
1
D 3 ln jcos xj, u
2
D 3x. Now (A) yields y
p
D 3e
x
.cos x ln jcos xjC
x sin x/.
5.7.6. ( A) y
p
D u
1
e
x
C u
2
e
x
;
u
0
1
e
x
C u
0
2
e
x
D 0 (B)
u
0
1
e
x
u
0
2
e
x
D
4e
x
1 C e
2x
: (C)
Adding (B) to (C) yields 2u
0
1
e
x
D
4e
x
1 C e
2x
, so u
0
1
D
2e
2x
1 e
2x
. From (B), u
0
2
D e
2x
u
0
1
D
2
1 e
2x
D
2e
2x
1 e
2x
. Using the substitution v D e
2x
we integrate u
0
1
to obtain u
1
D ln.1 e
2x
/.
80 Chapter 5
Linear Second Order Equations
Using the substitution v D e
2x
we i ntegrate u
0
2
to obtain u
1
D ln.1 e
2x
/. Now (A) yields y
p
D
e
x
ln.1 e
2x
/ e
x
ln.e
2x
1/.
5.7.8. ( A) y
p
D u
1
e
x
C u
2
e
x
x
;
u
0
1
e
x
C u
0
2
e
x
x
D 0 (B)
u
0
1
e
x
C u
0
2
e
x
x
e
x
x
2
D
e
2x
x
: (C)
Subtr acti ng (B) from (C) yields
u
0
2
e
x
x
2
D
e
2x
x
, so u
0
2
D xe
x
. From (B), u
0
1
D
u
0
2
x
D e
x
. Therefore
u
1
D e
x
, u
2
D xe
x
C e
x
. Now (A) yields y
p
D
e
2x
x
.
5.7.10. (A) y
p
D u
1
e
x
2
C u
2
xe
x
2
;
u
0
1
e
x
2
C u
0
2
xe
x
2
D 0 (B)
2xu
0
1
e
x
2
C u
0
2
.e
x
2
2x
2
e
x
2
/ D 4e
x.xC2/
: (C)
Multiplying (B) by 2x and adding the result to (C ) yields u
0
2
e
x
2
D 4e
x.xC2/
, so u
0
2
D 4e
2x
. From
(B), u
0
1
D u
0
2
x D 4xe
2x
. Therefore u
1
D .2x C 1/e
2x
, u
2
D 2e
2x
. Now (A) yields y
p
D
e
x.xC2/
.
5.7.12. (A) y
p
D u
1
x C u
2
x
3
;
u
0
1
x C u
0
2
x
3
D 0 (B)
u
0
1
C 3u
0
2
x
2
D
2x
4
sin x
x
2
D 2x
2
sin x (C):
Multiplying (B) by
1
x
and subt racting the result from (C) yields 2x
2
u
0
2
D 2x
2
sin x, so u
0
2
D sin x. From
(B), u
0
1
D u
0
2
x
2
D x
2
sin x. Therefore u
1
D .x
2
2/ cos x 2x sin x, u
2
D cos x. Now (A) yields
y
p
D 2x
2
sin x 2x cos x.
5.7.14. (A) y
p
D u
1
cos
p
x Cu
2
sin
p
x;
u
0
1
cos
p
x C u
0
2
sin
p
x D 0 (B)
u
0
1
sin
p
x
2
p
x
C u
0
2
cos
p
x
2
p
x
D
sin
p
x
4x
(C):
Multiplying (B ) by
sin
p
x
2
p
x
and (C) by cos
p
x and adding the resulting equations yields
u
0
2
2
p
x
D
sin
p
x cos
p
x
4x
, so u
0
2
D
sin
p
x cos
p
x
2
p
x
. From (B), u
0
1
D u
0
2
tan
p
x D
sin
2
p
x
2
p
x
. Therefore,
u
1
D
sin
p
x cos
p
x
2
p
x
2
, u
2
D
sin
2
p
x
2
. Now ( A ) yields y
p
D
sin
p
x
2
p
x cos
p
x
2
. Since
sin
p
x satisfies th e complementary equation we redefine y
p
D
p
x cos
p
x
2
.
Section 5.7
Variation of Parameters
81
5.7.16. (A) y
p
D u
1
x
a
C u
2
x
a
ln x;
u
0
1
x
a
C u
0
2
x
a
ln x D 0 (B)
au
0
1
x
a1
Cu
0
2
.ax
a1
ln x C x
a1
/ D
x
aC1
x
2
D x
a1
(C):
Multiplying (B) by
a
x
and su btracting th e result from (C) yields u
0
2
x
a1
D x
a1
, so u
0
2
D 1. From (B),
u
0
1
D u
0
2
ln x D ln x. Therefore, u
1
D x ln x, u
2
D x. Now (A) yields y
p
D x
aC1
.
5.7.18. y
p
D u
1
e
x
2
C u
2
e
x
2
;
u
0
1
e
x
2
C u
0
2
e
x
2
D 0 (B)
2u
0
1
xe
x
2
2u
0
2
xe
x
2
D
8x
5
x
D 8x
4
: (B)
Multiplying (B) by 2x and adding the result to (C) yields 4u
0
1
xe
x
2
D 8x
4
, so u
0
1
D 2x
3
e
x
2
. From (B),
u
0
2
D u
0
1
e
2x
2
D 2x
3
e
x
2
. Therefore u
1
D e
x
2
.x
2
C 1/, u
2
D e
x
2
.x
2
1/. Now (A) yields
y
p
D 2x
2
.
5.7.20. (A) y
p
D u
1
p
xe
2x
C u
2
p
xe
2x
;
u
0
1
p
xe
2x
C u
0
2
p
xe
2x
D 0 (B)
u
0
1
e
2x
2
p
x C
1
2
p
x
u
0
2
e
2x
2
p
x
1
2
p
x
D
8x
5=2
4x
2
D 2
p
x (C):
Multiplying (B) by
1
2x
, subtracting the result from (C), and cancelling common factor s from the resulting
equations y ields
u
0
1
e
2x
C u
0
2
e
2x
D 0 (D)
u
0
1
e
2x
u
0
2
e
2x
D 1: (E)
Adding (D) to (E) yields 2u
0
1
e
2x
D 1, so u
0
1
D
e
2x
2
. From (D), u
0
2
D u
0
1
e
4x
D
e
2x
2
. Therefore,
u
1
D
e
2x
4
, u
2
D
e
2x
4
. Now (A) yields y
p
D
p
x
2
.
5.7.22. (A)y
p
D u
1
xe
x
C u
2
xe
x
;
u
0
1
xe
x
C u
0
2
xe
x
D 0 (B)
u
0
1
.x C 1/e
x
u
0
2
.x 1/e
x
D
3x
4
x
2
D 3x
2
(C):
Multiplying (B) by
1
x
, subtracting the resulting eq uation from (C), and cancelling common factors yields
u
0
1
e
x
C u
0
2
e
x
D 0 (D)
u
0
1
e
x
u
0
2
e
x
D 3x: (E)
Adding (D) to (E) yi elds 2u
0
1
e
x
D 3x, so u
0
1
D
3xe
x
2
. From (D), u
0
2
D u
0
1
e
2x
D
3xe
x
2
. Therefore
u
1
D
3e
x
.x C 1/
2
, u
2
D
3e
x
.x 1/
2
. Now (A) yields y
p
D 3x
2
.
82 Chapter 5
Linear Second Order Equations
5.7.24. (A) y
p
D
u
1
x
C u
2
x
3
;
u
0
1
x
C u
0
2
x
3
D 0 (B)
u
0
1
x
2
C 3u
0
2
x
2
D
x
3=2
x
2
D x
1=2
: (C)
Multiplying (B) by
1
x
and addi ng the resul t to (C) yields 4u
0
2
x
2
D x
1=2
, so u
0
2
D
x
5=2
4
. From (B),
u
0
1
D u
0
2
x
4
D
x
3=2
4
. Therefore u
1
D
x
5=2
10
, u
2
D
x
3=2
6
. Now (A) yields y
p
D
4x
3=2
15
.
5.7.26. (A) y
p
D u
1
x
2
e
x
C u
2
x
3
e
x
;
u
0
1
x
2
e
x
C u
0
2
x
3
e
x
D 0 (B)
u
0
1
.x
2
e
x
C 2xe
x
/ C u
0
2
.x
3
e
x
C 3x
2
e
x
/ D
2xe
x
x
2
D
2e
x
x
: (C)
Subtr acti ng (B) from (C) and cancelling common factors in the resulting equations yields
u
0
1
C u
0
2
x D 0 (D)
2u
0
1
x C 3u
0
2
x
2
D
2
x
: (E)
Multiplying (D) by 2x and subtracting the result from (E) yields x
2
u
0
2
D
2
x
, so u
0
2
D
2
x
3
. From (D),
u
0
1
D u
0
2
x D
2
x
2
. Therefore u
1
D
2
x
, u
2
D
1
x
2
. Now (A) yields y
p
D xe
x
.
5.7.28. (A) y
p
D u
1
x C u
2
e
x
;
u
0
1
x C u
0
2
e
x
D 0 (B)
u
0
1
C u
0
2
e
x
D
2.x 1/
2
e
x
x 1
D 2.x 1/e
x
: (C)
Subtr acti ng (B) fr om (C) yield s u
0
1
.1x/ D 2.x1/e
x
, so u
0
1
D 2e
x
. From (B), u
0
2
D u
0
1
xe
x
D 2x.
Therefore, u
1
D 2e
x
, u
2
D x
2
. Now (A) yields y
p
D xe
x
.x 2/.
5.7.30. (A) y
p
D u
1
e
2x
Cu
2
xe
x
;
u
0
1
e
2x
C u
0
2
xe
x
D 0 (B)
2u
0
1
e
2x
C u
0
2
.e
x
xe
x
/ D
.3x 1/
2
e
2x
3x 1
D .3x 1/e
2x
: (C)
Multiplying (B) by 2 and subtracting th e result from (C) yields u
0
2
.1 3x/e
x
D .3x 1/e
2x
, so
u
0
2
D e
3x
. From (B), u
0
1
D u
0
2
xe
3x
D x. Therefore u
1
D
x
2
2
, u
2
D
e
3x
3
. Now (A) yields
y
p
D
xe
2x
.3x 2/
3
. The general solution of the given equation is y D
xe
2x
.3x 2/
3
Cc
1
e
2x
Cc
2
xe
x
.
Differentiatin g this yields y
0
D
e
2x
.3x
2
C x 1/
3
C 2c
1
e
2x
C c
2
.1 x/e
x
. Now y.0/ D 1; y
0
.0/ D
2 ) c
1
D 1; 2 D
1
3
C 2c
1
C c
2
, so c
2
D
1
3
, and y D
e
2x
.3x
2
2x C 6/
6
C
xe
x
3
.
Section 5.7
Variation of Parameters
83
5.7.32. (A) y
p
D u
1
.x 1/e
x
Cu
2
.x 1/;
u
0
1
.x 1/e
x
C u
0
2
.x 1/ D 0 (B)
u
0
1
xe
x
C u
0
2
D
.x 1/
3
e
x
.x 1/
2
D .x 1/e
x
: (C)
From (B), u
0
1
D u
0
2
e
x
. Substi tuting this into (C) yields u
0
2
.x1/ D .x1/e
x
, so u
0
2
D e
x
, u
0
1
D 1.
Therefore u
1
D x, u
2
D e
x
. Now (A) yields y
p
D e
x
.x1/
2
. The general solution of the given equation
is y D .x 1/
2
e
x
Cc
1
.x 1/e
x
Cc
2
.x 1/. Differentiating this yields y
0
D .x
2
1/e
x
Cc
1
xe
x
Cc
2
.
Now y.0/ D 4; y
0
.0/ D 6 ) 4 D 1 c
1
c
2
; 6 D 1 C c
2
, so c
1
D 2; c
2
D 5 and
y D .x
2
1/e
x
5.x 1/.
5.7.34. (A) y
p
D u
1
x C
u
2
x
2
;
u
0
1
x C
u
0
2
x
2
D 0 (B)
u
0
1
2u
0
2
x
3
D
2x
2
x
2
D 2: (C)
Multiplying (B) by
2
x
and adding the result to (C) yields 3u
0
1
D 2, so u
0
1
D
2
3
. From (B), u
0
2
D
u
0
1
x
3
D
2x
3
3
. Therefore u
1
D
2x
3
, u
2
D
x
4
6
. N ow (A) yields y
p
D
x
2
2
. The general solution
of the given equation is y D
x
2
2
C c
1
x C
c
2
x
2
. Differentiating this yields y
0
D x C c
1
2c
2
x
3
. Now
y.1/ D 1; y
0
.1/ D 1 ) 1 D
1
2
C c
1
C c
2
; 1 D 1 C c
1
2c
2
, so c
1
D 1; c
2
D
1
2
, and
y D
x
2
2
C x C
1
2x
2
.
5.7.36. Since y D y
p
a
1
y
1
a
2
y
2
,
P
0
.x/y
00
C P
1
.x/y
0
C P
2
.x/y D P
0
.x/.y
p
a
1
y
1
a
2
y
2
/
00
CP
1
.x/.y
p
a
1
y
1
a
2
y
2
/
0
CP
2
.x/.y
p
a
1
y
1
a
2
y
2
/
D .P
0
.x/y
00
p
C P
1
.x/y
0
p
C P
2
.x/y
p
/
a
1
P
0
.x/y
00
1
C P
1
.x/y
0
1
C P
2
.x/y
1
a
2
P
0
.x/y
00
2
C P
1
.x/y
0
2
C P
2
.x/y
2
D F .x/ a
1
0 a
2
0 D F .x/I
hence y is a particular solution of ( A ).
5.7.38. (a) y
p
D u
1
e
x
C u
2
e
x
is a solution of (A) o n .a; 1/ if u
0
1
e
x
C u
0
2
e
x
D 0 and u
0
1
e
x
u
0
2
e
x
D f .x/. Solving these two equations yields u
0
1
D
e
x
f
2
, u
0
2
D
e
x
f
2
. The functions u
1
.x/ D
1
2
Z
x
0
e
t
f .t/ dt and u
2
.x/ D
1
2
Z
x
0
e
t
f .t/ dt satisfy these conditions. Therefore,
y
p
.x/ D
e
x
2
Z
x
0
e
t
f .t/ dt
e
x
2
Z
x
0
e
t
f .t/ dt
D
1
2
Z
x
0
f .t/
e
.xt /e
.xt/
dt D
Z
x
0
f .t/ sinh.x t/ dt:
84 Chapter 5
Linear Second Order Equations
is a particular solution of y
00
y D f .x/. Differentiating y
p
yields
y
0
p
.x/ D
e
x
2
Z
x
0
e
t
f .t/ dt C
e
x
2
e
x
C
e
x
2
Z
x
0
e
t
f .t/ dt
e
x
2
e
x
D
e
x
2
Z
x
0
e
t
f .t/ dt C
e
x
2
Z
x
0
e
t
f .t/ dt
D
1
2
Z
x
0
f .t/
e
.xt /
Ce
.xt /
dt D
Z
x
0
f .t/ cosh.x t/ dt:
Since y
p
.x
0
/ D y
0
p
.x
0
/ D 0, the solution of the initi al value problem is
y D y
p
C k
0
cosh x C k
1
sinh x
D k
0
cosh x C k
1
sinh x C
Z
x
0
sinh.x t/f .t/ dt:
The derivative of the solution is
y
0
D y
0
p
C k
0
sinh x C k
1
cosh x
D k
0
sinh x C k
1
cosh x C
Z
x
0
cosh.x t/f .t/ dt:
CHAPTER 6
Applications of Linear Second Order
Equations
6.1 SPRING PROBLEMS I
6.1.2. Since
k
m
D
g
l
D
32
:1
D 320 the equation of motion is (A) y
00
C 320y D 0. The general
solution of (A) is y D c
1
cos 8
p
5t C c
2
sin 8
p
5t, so y
0
D 8
p
5.c
1
sin 8
p
5t C c
2
cos 8
p
5t/. Now
y.0/ D
1
4
) c
1
D
1
4
and y
0
.0/ D 2 ) c
2
D
1
4
p
5
, so y D
1
4
cos 8
p
5t
1
4
p
5
sin 8
p
5t ft.
6.1.4. Since
k
m
D
g
l
D
32
:5
D 64 the equation of motion is (A) y
00
C 64y D 0. The general solution
of (A) is y D c
1
cos 8t C c
2
sin 8t, so y
0
D 8.c
1
sin 8t C c
2
cos 8t/. Now y.0/ D
1
4
) c
1
D
1
4
and
y
0
.0/ D
1
2
) c
2
D
1
16
, so y D
1
4
cos 8t
1
16
sin 8t ft; R D
p
17
16
ft; !
0
D 8 rad/s; T D =4 s;
:245 rad 14:04
ı
.
6.1.6. Since k D
mg
l
D
.9:8/10
:7
D 140, the equation of motion of the 2 kg mass is (A) y
00
C 70y D
0. The general solution of (A) is y D c
1
cos
p
70t C c
2
sin
p
70t, so y
0
D
p
70.c
1
sin
p
70t C
c
2
cos
p
70t/. Now y.0/ D
1
4
) c
1
1
4
Dand y
0
.0/ D 2 ) c
2
D
2
p
70
, so y D
1
4
cos
p
70 t C
2
p
70
sin
p
70 t
m; R D
1
4
r
67
35
m; !
0
D
p
70 rad/s; T D 2=
p
70 s; 2:38 rad 136:28
ı
.
6.1.8. Since
k
m
D
g
l
D
32
1=2
D 64 the equation of motion is (A) y
00
C 64y D 0. The general solution
of (A) is y D c
1
cos 8t C c
2
sin 8t, so y
0
D 8.c
1
sin 8t C c
2
cos 8t/. Now y.0/ D
1
2
) c
1
D
1
2
and
y
0
.0/ D 3 ) c
2
D
3
8
, so y D
1
2
cos 8t
3
8
sin 8t ft.
6.1.10. m D
64
32
D 2, so the equation of motion is 2y
00
C 8y D 2 sin t, or (A) y
00
C 4y D sin t. Let
y
p
D A cos t C B sin t ; th en y
00
p
D A cos t B sin t , so y
00
p
C 4y
p
D 3A cos t C 3B sin t D sin t if
3A D 0, 3B D 1. Therefore,A D 0, B D
1
3
, and y
p
D
1
3
sin t. The general solution of
85
86 Chapter 6
Applications of Linear Second Order Equations
(A) is (B) y D
1
3
sin t C c
1
cos 2t C c
2
sin 2t, so y.0/ D
1
2
) c
1
D
1
2
. Differen tiating (B) yields
y
0
D
1
3
cos t 2c
1
sin 2t C 2c
2
cos 2t, so y
0
.0/ D 2 ) 2 D
1
3
C 2c
2
, so c
2
D
5
6
. Therefore,
y D
1
3
sin t C
1
2
cos 2t C
5
6
sin 2t ft.
6.1.12. m D
4
32
D
1
8
and k D
mg
l
D 4, so the equation of motion is
1
8
y
00
C 4y D
1
4
sin 8t, or (A)
y
00
C32y D 2 sin 8t. Let y
p
D A cos 8t CB sin 8t; then y
00
p
D 64A cos t 64B sin 8t, so y
00
p
C32y
p
D
32A cos 8t 32B sin 8t D 2 sin 8t if 32A D 0, 32B D 2. Therefore,A D 0, B D
1
16
, and
y
p
D
1
16
sin 8t. The general solu tion of (A) is (B) y D
1
16
sin 8t C c
1
cos 4
p
2t C c
2
sin 4
p
2t, so
y.0/ D
1
3
) c
1
D
1
3
. Differentiating ( B) yields y
0
D
1
2
cos 8tC4
p
2.c
1
sin 4
p
2t Cc
2
cos 4
p
2t/, so
y
0
.0/ D 1 ) 1 D
1
2
C4
p
2c
2
, so c
2
D
1
8
p
2
. Therefore,y D
1
16
sin 8t C
1
3
cos 4
p
2t
1
8
p
2
sin 4
p
2t ft.
6.1.14. Since T D
2
!
0
D 2
r
m
k
the period i s prop ortional to the square root of the mass. Therefore,
doubling the mass mut iplies the period by
p
2; hence the period of the syst em with th e 20 gm mass is
T D 4
p
2 s.
6.1.16. m D
6
32
D
3
16
and k D
mg
l
D
6
1=3
D 18 so t he equation of motion is
3
16
y
00
C 18y D
4 sin !t 6 cos !t, or (A) y
00
C 96y D
64
3
sin !t 32 cos !t. The displacement will be un bounded if
! D
p
96 D 4
p
6, in which case (A) becomes (B) y
00
C 96y D
64
3
sin 4
p
6t 32 cos 4
p
6t. Let
y
p
D At cos 4
p
6t C Bt sin 4
p
6tI then
y
0
p
D .A C 4
p
6Bt/ cos 4
p
6t C .B 4
p
6At/ sin 4
p
6t
y
00
p
D .8
p
6B 96At/ cos 4
p
6t .8
p
6A C 96Bt/ sin 4
p
6t; so
y
00
p
C 96y
p
D 8
p
6B cos 4
p
6t 8
p
6A sin 4
p
6t D
64
3
sin 4
p
6t 32 cos 4
p
6t
if 8
p
6B D 32, 8
p
6A D
64
3
. Therefore, A D
8
3
p
6
, B D
4
p
6
, and y
p
D
t
p
6
8
3
cos 4
p
6t C4 sin 4
p
6t
.
The general solution of (B) i s
y D
t
p
6
8
3
cos 4
p
6t C 4 sin 4
p
6t
C c
1
cos 4
p
6t C c
2
sin 4
p
6t; .C/
so y.0/ D 0 ) c
1
D 0. Differentiating (C) yields
y
0
D
8
3
p
6
cos 4
p
6t C
4
p
6
sin 4
p
6t
4t
8
3
sin 4
p
6t C 4 cos 4
p
6t
C4
p
6.c
1
sin 4
p
6t C c
2
cos
p
6t/;
so y
0
.0/ D 0 ) 0 D
8
3
p
6
C 4
p
6c
2
, and c
2
D
1
9
. Therefore,
y D
t
p
6
8
3
cos 4
p
6t C 4 sin 4
p
6t
C
1
9
sin 4
p
6t ft:
Section 6.2
Sprin g Problems II
87
6.1.18. The equation of motion is (A) y
00
C !
2
0
y D 0. The general solution of (A) is y D c
1
cos !
0
t C
c
2
sin !
0
t. Now y.0/ D y
0
) c
1
D y
0
. Since y
0
D !
0
.c
1
sin !
0
t C c
2
cos !
0
t/, y
0
.0/ D v
0
) c
2
D
v
0
!
0
. Therefore, y D y
0
cos !
0
t C
v
0
!
0
sin !
0
t;
R D
1
!
0
p
.!
0
y
0
/
2
C .v
0
/
2
I cos D
y
0
!
0
p
.!
0
y
0
/
2
C .v
0
/
2
I sin D
v
0
p
.!
0
y
0
/
2
C .v
0
/
2
:
Discussion 6.1.1 In Exercises 19, 20, and 21 we use the fact that in a spring–mass system w ith mass m
and spring constant k the period of th e motion is T D 2
r
m
k
. Therefore, if we have two systems with
masses m
1
and m
2
and spring const ants k
1
and k
2
, then the periods are related by
T
2
T
1
D
s
m
2
k
1
m
1
k
2
. We
will use this formula in the solutions of these exercises.
6.1.20. Let m
2
D 2m
1
. Since k
1
D k
2
,
T
2
T
1
D
s
2m
1
m
1
D
p
2, so T
2
D
p
2T
1
.
6.1.21. Suppose th at T
2
D 3T
1
. Since m
1
D m
2
,
s
k
1
k
2
D 3, k
1
D 9k
2
.
6.2 SPRING PROBLEMS II
6.2.2. Since k D
mg
l
D
16
3:2
D 5 the equation of motion is
1
2
y
00
Cy
0
C5y D 0, or (A) y
00
C2y
0
C10y D 0.
The characteristic p olynomial of (A) is p.r/ D r
2
C2rC10 D .rC1/
2
C9. Therefore,the general solution
of (A) is y D e
t
.c
1
cos 3t C c
2
sin 3t/, so y
0
D y C 3e
t
.c
1
sin 3t C c
2
cos 3t/. Now y.0/ D 3
and y
0
.0/ D 2 ) c
1
D 3 and 2 D 3 C 3c
2
, or c
2
D
1
3
. Therefore,y D e
t
3 cos 3t C
1
3
sin 3t
ft. The time–varying amplitude is
p
82
3
e
t
ft.
6.2.4. Since k D
mg
l
D
96
3:2
D 30 the equation of motion is 3y
00
C 18y
0
C 30y D 0, or (A) y
00
C 6y
0
C
10y D 0. The characteristic polynomial of (A) is p.r/ D r
2
C 6r C 10 D .r C 3/
2
C 1. Therefore,the
general solution of (A) is y D e
3t
.c
1
cos t C c
2
sin t/, so y
0
D 3y C e
3t
.c
1
sin t C c
2
cos t/.
Now y.0/ D
5
4
and y
0
.0/ D 12 ) c
1
D
5
4
and 12 D
15
4
C c
2
, or c
2
D
63
4
. Therefore,
y D
e
3t
4
.5 cos t C 63 sin t/ ft.
6.2.6. Since k D
mg
l
D
8
:32
D 25 the equation of motio n is
1
4
y
00
C
3
2
y
0
C 25y D 0, or (A) y
00
C6y
0
C
100y D 0. The characteristic polynomial of (A) is p.r/ D r
2
C6r C100 D .r C3/
2
C91. Therefore,the
general solution of (A) is y D e
3t
.c
1
cos
p
91tCc
2
sin
p
91t/, so y
0
D 3yC
p
91e
3t
.c
1
sin
p
91t C
c
2
cos
p
91t/. Now y.0/ D
1
2
and y
0
.0/ D 4 ) c
1
D
1
2
and 4 D
3
2
C
p
91c
2
, or c
2
D
11
2
p
91
.
Therefore,y D
1
2
e
3t
cos
p
91t C
11
p
91
sin
p
91t
ft.
6.2.8. Since k D
mg
l
D
20 980
5
D 3920 the equation of motion is 20y
00
C 400y
0
C 3920y D 0,
or (A) y
00
C 20y
0
C 196y D 0. The characteristic polynomial of (A) is p.r/ D r
2
C 20r C 196 D
88 Chapter 6
Applications of Linear Second Order Equations
.r C 10/
2
C 96. Therefore,the general solution of (A) is y D e
10t
.c
1
cos 4
p
6t C c
2
sin 4
p
6t/, so
y
0
D 10y C 4
p
6e
10t
.c
1
sin 4
p
6t C c
2
cos 4
p
6t/. Now y.0/ D 9 and y
0
.0/ D 0 ) c
1
D 9 and
0 D 90 C 4
p
6c
2
, or c
2
D
45
2
p
6
. Therefore, y D e
10t
9 cos 4
p
6t C
45
2
p
6
sin 4
p
6t
cm.
6.2.10. Since k D
mg
l
D
32
1
D 32 the equation of motion is (A) y
00
C 3y
0
C 32y D 0. The characteris-
tic polynomial of (A) is p.r / D r
2
C3rC32 D
r C
3
2
2
C
119
4
. Therefore,the general solution of (A) is
y D e
3t=2
c
1
cos
p
119
2
t C c
2
sin
p
119
2
t
!
, so y
0
D
3
2
yC
p
119
2
e
3t=2
c
1
sin
p
119
2
t C c
2
cos
p
119
2
t
!
.
Now y.0/ D
1
2
and y
0
.0/ D 3 ) c
1
D
1
2
and 3 D
3
4
C
p
119
2
c
2
, or c
2
D
9
2
p
119
. Therefore,
y D e
3
2
t
1
2
cos
p
119
2
t
9
2
p
119
sin
p
119
2
t
!
ft.
6.2.12. Since k D
mg
l
D
2
:32
D
25
4
the equation of motion is
1
16
y
00
C
1
8
y
0
C
25
4
y D 0, or (A)
y
00
C 2y
0
C 100y D 0. The characteristic polynomial of (A) is p.r/ D r
2
C 2r C 100 D .r C
1/
2
C 99. Therefore,the general solution of (A) is y D e
t
.c
1
cos 3
p
11t C c
2
sin 3
p
11t/, so y
0
D
y C 3
p
11e
t
.c
1
sin 3
p
11t C c
2
cos 3
p
11t/. Now y.0/ D
1
3
and y
0
.0/ D 5 ) c
1
D
1
3
and
5 D
1
3
C 3
p
11c
2
, or c
2
D
14
9
p
11
. Therefore,y D e
t
1
3
cos 3
p
11t C
14
9
p
11
sin 3
p
11t
ft.
6.2.14. Since k D
mg
l
D 32 the equation of motio n is (A) y
00
C 12y
0
C 32y D 0. The characteristic
polynomial of (A) is p.r/ D r
2
C 12r C 32 D .r C 8/.r C 4/. Therefore, th e general solution of (A) is
y D c
1
e
8t
Cc
2
e
4t
, so y
0
D 8c
1
e
8t
4c
2
e
4t
. Now y.0/ D
2
3
and y
0
.0/ D 0 ) c
1
Cc
2
D
2
3
;-
8c
1
4c
2
D 0, so c
1
D
2
3
, c
2
D
4
3
, and y D
2
3
.e
8t
2e
4t
/.
6.2.16. Since k D
mg
l
D
100 980
98
D 100 the equation of motion is 100y
00
C 600y
0
C 1000y D 0, o r
(A) y
00
C6y
0
C10y D 0. The characteristic polynomial of (A) is p.r/ D r
2
C6r C10 D .r C3/
2
C1.
Therefore, the general solution of (A) is y D e
3t
.c
1
cos t C c
2
sin t/, so y
0
D 3y C e
t
.c
1
sin t C
c
2
cos t/. Now y.0/ D 10 and y
0
.0/ D 100 ) c
1
D 10 and 100 D 30 C c
2
, or c
2
D 70.
Therefore, y D e
3t
.10 cos t 70 sin t/ cm.
6.2.18. The equation of motion is (A) 2y
00
C4y
0
C20y D 3 cos 4t 5 sin 4t. The steady state component
of the solution of (A) is o f the form y
p
D A cos 4t CB sin 4t; therefore y
0
p
D 4A sin 4t C4B cos 4t and
y
00
p
D 16A cos 4t 16B sin 4t, so 2y
00
p
C4y
0
p
C20y
p
D .12A C16B/ cos 4t .16A C12B/ sin 4t D
3 cos 4t 5 sin 4t if 12A C 16B D 3, 16A 12B D 5; therefore A D
11
100
, B D
27
100
, and
y
p
D
11
100
cos 4t C
27
100
sin 4t cm.
6.2.20. Since k D
mg
l
D
9:8
:49
D 20 the equation of motio n is (A) y
00
C4y
0
C20y D 8 sin 2t 6 cos 2t.
The steady state component of the solution of (A) is of the form y
p
D A cos 2t C B sin 2t; therefore
Section 6.3
The RLC Circuit
89
y
0
p
D 2A sin 2t C 2B cos 2t and y
00
p
D 4A cos 2t 4B sin 2t, so y
00
p
C 4y
0
p
C 20y
p
D .16A C
8B/ cos 2t .8A 16B/ sin 2t D 8 sin 2t 6 cos 2t if 16A C 8B D 6, 8A C 16B D 8; therefore
A D
1
2
, B D
1
4
, and y D
1
2
cos 2t C
1
4
sin 2t m.
6.2.22. If e
r
1
t
.c
1
C c
2
t/ D 0, t hen (A) c
1
C c
2
t D 0. If c
2
D 0, then c
1
¤ 0 (by assumption), so (A) is
impossib le. If c
1
¤ 0, then th e left side of (A) is strictly monotonic and therefore cannot have the same
value for two distinct values of t.
6.2.24. If y D e
ct=2m
.c
1
cos !
1
t C c
2
sin !
1
t/, then y
0
D
c
2m
y C !
1
e
ct=2m
.c
1
sin !
1
t C
c
2
cos !
1
t/, so y.0/ D y
0
and y
0
.0/ D v
0
) c
1
D y
0
and v
0
D
cy
0
2m
Cc
2
!
1
, so c
2
D
1
!
1
v
0
C
cy
0
2m
t
and y D e
ct=2m
y
0
cos !
1
t C
1
!
1
v
0
C
cy
0
2m
sin !
1
t
.
6.2.26. If y D e
r
1
t
.c
1
C c
2
t/, then y
0
D r
1
y C c
2
e
r
1
t
, so y.0/ D y
0
and y
0
.0/ D v
0
) c
1
D y
0
and
v
0
D r
1
y
0
C c
2
, so c
2
D v
0
r
1
y
0
. Therefore, y D e
r
1
t
.y
0
C .v
0
r
1
y
0
/t/.
6.3 THE RLC CIRCUIT
6.3.2.
1
20
Q
00
C 2Q
0
C 100Q D 0; Q
00
C 40Q
0
C 2000Q D 0; r
2
C 40r C 2000 D .r C 20/
2
C
1600 D 0; r D 20 ˙ 40i ; Q D e
20t
.2 cos 40t C c
2
sin 40t/ (since Q
0
D 2); I D Q
0
D
e
20t
..40c
2
40/ cos 40t .20c
2
C 80/ sin 40t/; I
0
D 2 ) 40c
2
40 D 2 ) c
2
D
21
20
, so
20c
2
C 80 D 101; I D e
20t
.2 cos 40t 101 sin 40t/.
6.3.4.
1
10
Q
00
C 6Q
0
C 250Q D 0; Q
00
C 60Q
0
C 2500Q D 0; r
2
C 60r C 2500 D .r C 30/
2
C
1600 D 0; r D 30 ˙ 40i ; Q D e
30t
.3 cos 40t C c
2
sin 40t/ (since Q
0
D 3); I D Q
0
D
e
30t
..40c
2
90/ cos 40t .30c
2
C 120/ sin 40t/; I
0
D 10 ) 40c
2
90 D 10 ) c
2
D 2, so
30c
2
120 D 180; I D 10e
30t
.cos 40t C 18 sin 40t/.
6.3.6. Q
p
D A cos 10t C B sin 10t; Q
0
p
D 10B cos 10t 10A sin 10t; Q
00
p
D 100A cos 10t
100B sin 10t;
1
10
Q
00
p
C 3Q
0
p
C 100Q
9
D .90A C 30B/ cos 10t .30A 90B/ sin 10t D 5 cos 10t
5 sin 10t, so 90A C 30B D 5, 30A C 90B D 5. Therefore, A D 1=15, B D 1=30, Q
p
D
cos 10t
15
sin 10t
30
, and I
p
D
1
3
.cos 10t C 2 sin 10t/.
6.3.8. Q
p
D A cos 50t C B sin 50t; Q
0
p
D 50B cos 50t 50A sin 50t ; Q
00
p
D 2500A cos 50t
2500B sin 50t;
1
10
Q
00
p
C2Q
0
p
C100Q
p
.150AC100B/ cos 50t .100AC150B/ sin50t D 3 cos 50t
6 sin 50t, so 150A C 100B D 3, 100A C 1500B D 6. Therefore,A D 3=650, B D 12=325,
Q
p
D
3
650
.cos 50t C 8 sin 50t/, and I
p
D
3
13
.8 cos 50t sin 50t/.
6.3.10. Q
p
D A cos 30t C B sin 30t; Q
0
p
D 30B cos 30t 30A sin 30t; Q
00
p
D 900A cos 30t
900B sin 30t;
1
20
Q
00
p
C4Q
0
p
C125Q
p
D .80A C120B/ cos 30t .120A 80B/ sin 30t D 15 cos 30t
30 si n 30t , so 80AC120B D 15, 120AC80B D 30, A D 3=13, B D 3=104, Q
p
D
3
104
.8 cos 30t
sin 30t/, and I
p
D
45
52
.cos 30t C 8 sin 30t/.
90 Chapter 6
Applications of Linear Second Order Equations
6.3.12. Let D .!/ be the amplitude of I
p
. From the solution of Exercise 6.3.11, Q
p
D A cos !t C
B cos !t , where A D
.1=C L!
2
/U R!V
, B D
R!U C .1=C L!
2
/V
, and D .1=C
L!
2
/
2
CR
2
!
2
. Since I
p
D Q
0
p
D !.A si n !t CB cos !t/, i t follows that
2
.!/ D !
2
.A
2
C B
2
/ D
U
2
C V
2
.!/
, with .!/ D
!
2
D .1=C! L!/
2
C R
2
, which attains it mininmum value R
2
when
! D !
0
D
1
p
LC
. The maximum amplitude o f I
p
is .!/ D
p
U
2
C V
2
R
.
6.4 MOTION UNDER A CE N TRAL FORCE
6.4.2. Let h D r
2
0
0
0
; then D
h
2
k
. Since r D
1 C e cos. /
, it follows th at (A) e cos. / D
r
1. Differentiating this with respect to t y ields e sin. /
0
D
r
0
r
2
, so (B) e sin. / D
r
0
h
, sin ce r
2
0
h. Squaring and adding (A) and (B) and setting t D 0 in the result yields e D
"
r
0
1
2
C
r
0
0
h
2
#
1=2
. I f e D 0, then
0
is undefined, but also irrelevant; if e ¤ 0, then set t D 0
in (A) and ( B) to see that D
0
˛, where ˛ < , cos ˛ D
1
e
r
0
1
and sin ˛ D
r
0
0
eh
6.4.4. Recall that (A)
d
2
u
d
2
D
1
mh
2
u
2
f .1=u/. Let u D
1
r
D
1
c
2
; then
d
2
u
d
2
D
6
c
4
D 6cu
2
.
6cu
2
C u D
1
mh
2
u
2
f .1=u/, so f .1=u/ D mh
2
.6cu
4
C u
3
/ and f .r/ D mh
2
6c
r
4
C
1
r
3
.
6.4.6. ( a) With f .r / D
mk
r
3
, Eqn. 6.4.11 becomes (A)
d
2
u
d
2
C
1
k
h
2
u D 0. The initial condit ions
imply that u.
0
/ D
1
r
0
and
du
d
.
0
/ D
r
0
0
h
(see Eqn. (6.4.)
(b) Let D
ˇ
ˇ
ˇ
ˇ
1
k
h
2
ˇ
ˇ
ˇ
ˇ
1=2
. (i) If h
2
< k, then (A) becomes
d
2
u
d
2
2
u D 0, and the solution
of the initial value problem for u is u D
1
r
0
cosh .
0
/
r
0
0
h
sinh .
0
/; therefore r D
r
0
cosh .
0
/
r
0
r
0
0
h
sinh .
0
/
1
. (ii) If h
2
D k, then (A) becomes
d
2
u
d
2
D 0, and the solu-
tion of the initial value problem for u is u D
1
r
0
r
0
0
h
.
0
/; therefore r D r
0
1
r
0
r
0
0
h
.
0
/
1
.
(iii) If h
2
> k, then (A) becomes
d
2
u
d
2
C
2
u D 0, and the solution of the initial value problem for u is
u D
1
r
0
cos .
0
/
r
0
0
h
sin .
0
/; therefore r D r
0
cos .
0
/
r
0
r
0
0
h
sin .
0
/
1
.
CHAPTER 7
Series Solutions of Linear Second
Equations
7.1 REVIEW OF POWER SERIES
7.1.2. From Theorem 7.1.3,
P
1
mD0
b
m
´
m
converges if j´j < 1=L and diverges if j´j > 1=L. Therefore,
P
1
mD0
b
m
.x x
0
/
2
converges if jx x
0
j < 1=
p
L and diverges if jx x
0
j > 1=
p
L.
7.1.4. From Theorem 7.1.3,
P
1
mD0
b
m
´
m
converges if j´j < 1=L and diverges if j´j > 1=L. Therefore,
P
1
mD0
b
m
.x x
0
/
km
converges if jx x
0
j < 1=
k
p
L and diverges if jx x
0
j > 1=
k
p
L.
7.1.12. .1 C 3x
2
/y
00
C 3x
2
y
0
2y D
1
X
nD2
n.n 1/a
n
x
n2
C 3
1
X
nD2
n.n 1/a
n
x
n
C 3
1
X
nD1
na
n
x
nC1
2
1
X
nD0
a
n
x
n
D
1
X
nD0
.n C2/.n C1/a
nC2
x
n
C3
1
X
nD1
n.n 1/na
n
x
n
C3
1
X
nD1
.n 1/a
n1
x
n
2
1
X
nD0
a
n
x
n
D
2a
2
2a
0
C
1
X
nD1
Œ.n C 2/.n C 1/a
nC2
C .3n.n 1/ 2/a
n
C 3.n 1/a
n1
x
n
.
7.1.13. .1 C2x
2
/y
00
C.23x/y
0
C4y D
1
X
nD2
n.n1/a
n
x
n2
C2
1
X
nD2
n.n1/a
n
x
n
C2
1
X
nD1
na
n
x
n1
2
1
X
nD0
a
n
x
n
C4
1
X
nD0
a
n
x
n
D
1
X
nD0
.n C2/.n C1/a
nC2
x
n
C2
1
X
nD0
n.n 1/a
n
x
n
C2
1
X
nD0
.n C 1/a
nC1
x
n
3
1
X
nD0
a
n
x
n
C 4
1
X
nD0
a
n
x
n
1
X
nD0
.n C 2/.n C1/a
nC2
C 2.n C1/a
nC1
C .2n
2
5n C 4/a
n
x
n
.
7.1.14. .1 C x
2
/y
00
C .2 x/y
0
C 3y D
1
X
nD2
n.n 1/a
n
x
n2
C
1
X
nD2
n.n 1/a
n
x
n
C 2
1
X
nD1
na
n
x
n1
1
X
nD1
na
n
x
n
C 3
1
X
nD0
a
n
x
n
D
1
X
nD0
.n C 2/.n C 1/a
nC2
x
n
C
1
X
nD0
n.n 1/a
n
x
n
C 2
1
X
nD0
.n C 1/a
nC1
x
n
1
X
nD0
na
n
x
n
C 3
1
X
nD0
a
n
x
n
D
1
X
nD0
.n C 2/.n C 1/a
nC2
C 2.n C 1/a
nC1
C .n
2
2n C3/a
n
x
n
.
91
92 Chapter 7
Series Solutions of Linear Second Equati ons
7.1.16. Let t D xC1; then xy
00
C.4C2x/y
0
C.2Cx/y D .1Ct/y
00
C.2C2t/y
0
C.1Ct/y D
1
X
nD2
n.n
1/a
n
t
n2
C
1
X
nD2
n.n 1/a
n
t
n1
C2
1
X
nD1
na
n
t
n1
C2
1
X
nD1
na
n
t
n
C
1
X
nD0
a
n
t
n
C
1
X
nD0
a
n
t
nC1
D
1
X
nD0
.n C
2/.nC1/a
nC2
t
n
C
1
X
nD0
.nC1/na
nC1
t
n
C2
1
X
nD0
.nC1/a
nC1
t
n
C2
1
X
nD0
na
n
t
n
C
1
X
nD0
a
n
t
n
C
1
X
nD1
a
n1
t
n
D
.2a
2
C2a
1
Ca
0
/C
1
X
nD1
Œ.n C 2/.n C 1/a
nC2
C .n C 1/.n C 2/a
nC1
C .2n C 1/a
n
C a
n1
.xC2/
n
.
7.1.20. y
0
.x/ D x
r
1
X
nD0
na
n
x
n1
C rx
r1
1
X
nD0
a
n
x
n
D
1
X
nD0
.n C r /x
nCr1
y
00
D
d
dx
y
0
.x/ D
d
dx
"
x
r1
1
X
nD0
.n C r /a
n
x
n
#
D x
r1
1
X
nD0
.n C r/na
n
x
n1
C.r 1/x
r2
1
X
nD0
.n C
r/a
n
x
n
D
1
X
nD0
.n C r /.n C r 1/a
n
x
nCr2
.
7.1.22. x
2
.1 C x/y
00
C x.1 C 2x/y
0
.4 C 6x/y D .x
2
y
00
C xy
0
4y/ C x.x
2
y
00
C 2xy
0
6y/ D
1
X
nD0
Œ.n C r/.n C r 1/ C .n C r/ 4a
n
x
nCr
C
1
X
nD0
Œ.n C r/.n C r 1/ C2.n Cr/ 6a
n
x
nCrC1
D
1
X
nD0
.n C r 2/.n C r C 2/a
n
x
nCr
C
1
X
nD0
.n C r C 3/.n C r 2/a
n
x
nCrC1
D
1
X
nD0
.n C r 2/.n C
r C 2/a
n
x
nCr
C
1
X
nD1
.n C r C2/.n C r 3/a
n1
x
nCr
D x
r
1
X
nD0
b
n
x
n
with b
0
D .r 2/.r C 2/a
0
and
b
n
D .n C r 2/.n C r C 2/a
n
C .n C r C 2/.n C r 3/a
n1
, n 1.
7.1.24. x
2
.1 C 3x/y
00
C x.2 C 12x C x
2
/y
0
C 2x.3 C x/y D .x
2
y
00
C 2xy
0
/ C x.3x
2
y
00
C 12xy
0
C
6y/ Cx
2
.xy
0
C2y/ D
1
X
nD0
Œ.n Cr/.n Cr 1/ C2.n Cr /a
n
x
nCr
C
1
X
nD0
Œ3.n Cr/.n Cr 1/ C12.n C
r/ C6a
n
x
nCrC1
C
1
X
nD0
Œ.nCr/C2a
n
x
nCrC2
D
1
X
nD0
.nCr /.n Cr C1/a
n
x
nCr
C3
1
X
nD0
.nCr C1/.n C
r C2/a
n
x
nCrC1
C
1
X
nD0
.n Cr C2/a
n
x
nCrC2
D
1
X
nD0
.n Cr/.n Cr C1/a
n
x
nCr
C3
1
X
nD1
.n Cr/.n Cr C
1/a
n1
x
nCr
C
1
X
nD2
.n C r /a
n2
x
nCr
D x
r
1
X
nD0
b
n
x
n
with b
0
D r .r C 1/a
0
, b
1
D .r C 1/.r C 2/a
1
C
3.r C 1/.r C 2/a
0
, b
n
D .n C r /.n C r C 1/a
n
C 3.n Cr/.n C r C 1/a
n1
C .n C r/a
n2
, n 2.
7.1.26. x
2
.2Cx
2
/y
00
C2x.5Cx
2
/y
0
C2.3x
2
/y D .2x
2
y
00
C10xy
0
C6y/Cx
2
.x
2
y
00
C2xy
0
2y/ D
1
X
nD0
Œ2.nCr/.n Cr 1/ C10.n Cr/ C6a
n
x
nCr
C
1
X
nD0
Œ.n Cr/.n Cr 1/ C2.n Cr / 2a
n
x
nCrC2
D
2
1
X
nD0
.n C r C1/.n C r C 3/a
n
x
nCr
C
1
X
nD0
.n C r 1/.n C r C 2/a
n
x
nCrC2
D 2
1
X
nD0
.n C r C 1/.n C
Section 7.2
Series Solutions Near an Ordinary Point I
93
r C 3/a
n
x
nCr
C
1
X
nD2
.n C r 3/.n C r/a
n2
x
nCr
D x
r
1
X
nD0
b
n
x
n
with b
0
D 2.r C 1/.r C 3/a
0
,
b
1
D 2.r C 2/.r C 4/a
1
b
n
D 2.n C r C 1/.n C r C 3/a
n
C .n C r 3/.n C r/a
n2
, n 2.
7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I
7.2.2. p.n/ D n.n 1/ C 2n 2 D .n C 2/.n 1/; a
nC2
D
n1
nC1
a
n
; a
2mC2
D
2m 1
2m C 1
a
2m
, so
a
2m
D
.1/
m
2m 1
a
0
; a
2mC3
D
m
m C 2
a
2mC1
D 0 if m 0; y D a
0
1
X
mD0
.1/
mC1
x
2m
2m 1
Ca
1
x.
7.2.4. p.n/ D n.n 1/ 8n 12 D .n C 3/.n C 4/; a
nC2
D
.nC3/.nC4/
.nC2/.nC1/
a
n
; a
2mC2
D
.m C 2/.2m C 3/
.m C 1/.2m C 1/
a
2m
, so a
2m
D .mC1/.2mC1/a
0
; a
2mC3
D
.m C 2/.2m C 5/
.m C 1/.2m C 3/
a
2mC1
so a
2mC1
D
.m C 1/.2m C 3/
3
a
1
; y D a
0
1
X
mD0
.m C 1/.2m C 1/x
2m
C
a
1
3
1
X
mD0
.m C 1/.2m C 3/x
2mC1
.
7.2.6. p.n/ D n.n1/C2nC
1
4
D
.2n C 1/
2
4
; a
nC2
D
.2nC1/
2
4.nC2/.nC1/
a
n
; a
2mC2
D
.4m C 1/
2
8.m C 1/.2m C1/
a
2m
,
so a
2m
D .1/
m
2
4
m1
Y
j D0
.4j C 1/
2
2j C 1
3
5
1
8
m
a
0
; a
2mC3
D
.4m C 3/
2
8.2m C 3/.m C 1/
a
2mC1
so a
2mC1
D
.1/
m
2
4
m1
Y
j D0
.4j C 3/
2
2j C 3
3
5
1
8
m
a
1
; y D a
0
1
X
mD0
.1/
m
2
4
m1
Y
j D0
.4j C 1/
2
2j C 1
3
5
x
2m
8
m
C a
1
1
X
mD0
.1/
m
2
4
m1
Y
j D0
.4j C 3/
2
2j C 3
3
5
x
2mC1
8
m
7.2.8. p.n/ D n.n1/10nC28 D .n7/.n4/; a
nC2
D
.n7/.n4/
.nC2/.nC1/
a
n
; a
2mC2
D
2.2m 7/.m 2/
2.m C 1/.2m C 1/
a
2m
,
so a
2
D 14a
0
, a
4
D
5
6
a
2
D
35
3
a
0
, a
2m
D 0 if m 3; a
2mC3
D
.m 3/.2m 3/
.2m C 3/.m C 1/
a
2mC1
, so
a
3
D 3a
1
, a
5
D
1
5
a
3
D
3
5
a
1
, a
7
D
1
21
a
5
D
1
35
a
1
;
y D a
0
1 14x
2
C
35
3
x
4
C a
1
x 3x
3
C
3
5
x
5
C
1
35
x
7
.
7.2.10. p.n/ D 2n C 3; a
nC2
D
2n C 3
.n C 2/.n C 1/
a
n
; a
2mC2
D
4m C3
2.m C 1/.2m C1/
a
2m
, so a
2m
D
2
4
m1
Y
j D0
4j C 3
2j C 1
3
5
.1/
m
2
m
a
0
; a
2mC3
D
4m C5
2.2m C 3/.m C 1/
a
2mC1
so a
2mC1
D
2
4
m1
Y
j D0
4j C 5
2j C 3
3
5
.1/
m
2
m
a
1
;
y D a
0
1
X
mD0
.1/
m
2
4
m1
Y
j D0
4j C 3
2j C 1
3
5
x
2m
2
m
C a
1
1
X
mD0
.1/
m
2
4
m1
Y
j D0
4j C 5
2j C 3
3
5
x
2mC1
2
m
7.2.12. p.n/ D 2n.n 1/ 9n 6 D .n 6/.2n C1/; a
nC2
D
.n 6/.2n C 1/
.n C 2/.n C 1/
a
n
; a
0
D y.0/ D 1;
a
1
D y
0
.0/ D 1.
7.2.13. p.n/ D 8n.n 1/ C 2 D 2.2n 1/
2
; a
nC2
D
2.2n 1/
2
.n C 2/.n C 1/
a
n
; a
0
D y.0/ D 2; a
1
D
y
0
.0/ D 1.
94 Chapter 7
Series Solutions of Linear Second Order Equations
7.2.16. p.n/ D 1; a
nC2
D
1
.n C 2/.n C1/
a
n
; a
2mC2
D
1
.2m C 2/.2m C1/
a
2m
, so a
2m
D
1
.2m/Š
a
0
;
a
2mC3
D
1
.2m C 3/.2m C 1/
a
2mC1
, so a
2mC1
D
1
.2m C 1/Š
a
1
; y D a
0
1
X
mD0
.x 3/
2m
.2m/Š
C a
1
1
X
mD0
.x 3/
2mC1
.2m C 1/Š
.
7.2.18. Let t D x 1; then .1 2t
2
/y
00
10ty
0
6y D 0; p.n/ D 2n.n 1/ 10n 6 D
2.n C 1/.n C 3/; a
nC2
D
2.n C 3/
n C 2
a
n
; a
2mC2
D
2m C 3
m C 1
a
2m
, so a
2m
D
1
2
4
m1
Y
j D0
.2j C 3/
3
5
a
0
;
a
2mC3
D
4.m C 2/
2m C 3
a
2mC1
, so a
2mC1
D
4
m
.m C 1/Š
Q
m1
j D0
.2j C 3/
a
1
; y D a
0
1
X
mD0
2
4
m1
Y
j D0
.2j C 3/
3
5
.x 1/
2m
C a
1
1
X
mD0
4
m
.m C 1/Š
Q
m1
j D0
.2j C 3/
.x 1/
2mC1
.
7.2.20. Let t D x C 1; then
1 C
3t
2
3
y
00
9t
2
y
0
C
3
2
y D 0; p.n/ D
3
2
n.n 1/ C
9
2
n C
3
2
D
3
2
.n C
1/
2
; a
nC2
D
3.n C 1/
2.n C 2/
a
n
; a
2mC2
D
3.2m C 1/
4.m C 1/
a
2m
, so a
2m
D .1/
m
2
4
m1
Y
j D0
.2j C 1/
3
5
3
m
4
m
a
0
;
a
2mC3
D
3.m C 1/
2m C 3
a
2mC1
, so a
2mC1
D .1/
m
3
m
Q
m1
j D0
.2j C 3/
a
1
;
y D a
0
1
X
mD0
.1/
m
2
4
m1
Y
j D0
.2j C 1/
3
5
3
m
4
m
.x C 1/
2m
C a
1
1
X
mD0
.1/
m
3
m
Q
m1
j D0
.2j C 3/
.x C 1/
2mC1
.
7.2.22. p.n/ D n C 3; a
nC2
D
n C 3
.n C 2/.n C 1/
a
n
; a
0
D y.3/ D 2; a
1
D y
0
.3/ D 3.
7.2.24. Let t D x 3; .1 C 4t
2
/y
00
C y D 0; p.n/ D .4n.n 1/ C 1 D 2n 1/
2
; a
nC2
D
.2n 1/
2
.n C 2/.n C 1/
a
n
; a
0
D y.3/ D 4; a
1
D y
0
.3/ D 6.
7.2.26. Let t D x C 1;
1 C
2t
2
3
y
00
20
3
ty
0
C 20y D 0; p.n/ D
2
3
n.n 1/
20
3
n C 20 D
2.n 6/.n 5/
3
; a
nC2
D
2.n 6/.n 5/
3.n C 2/.n C1/
a
n
; a
0
D y.1/ D 3; a
1
D y
0
.1/ D 3.
7.2.28. From Theorem 7.2.2, a
nC2
D
p.n/
.n C 2/.n C 1/
a
n
; a
2mC2
D
p.2m/
.2m C 2/.2m C 1/
a
2m
, so
a
2m
D
2
4
m1
Y
j D0
p.2j /
3
5
.1/
m
.2m/Š
a
0
; a
2mC3
D
p.2m C 1/
.2m C 3/.2m C2/
a
2m
, so a
2mC1
D
2
4
m1
Y
j D0
p.2j C 1/
3
5
.1/
m
.2m C 1/Š
a
1
.
7.2.30. (a) Here p.n/ D Œn.n 1/ C 2b n ˛ C 2b 1/ D .n ˛/.n C ˛ C 2b 1/, so
Exercise 7.2.28 implies that y
1
and y
2
have the stated forms. If ˛ D 2k, then
y
1
D
1
X
mD0
2
4
m1
Y
j D0
.2j 2k/.2j C 2k C 2b 1/
3
5
x
2m
.2m/Š
.C/:
Section 7.2
Series Solutions Near an Ordinary Point I
95
If ˛ D 2k C 1, th en
y
2
D
1
X
mD0
2
4
m1
Y
j D0
.2j 2k/.2j C 2k C2b/
3
5
x
2mC1
.2m C 1/Š
: .D/
Since 2b is not a negative integer and
Q
m1
j D0
.2j 2k/ D 0 if m > k, y
1
in (C) and y
2
in (D) have the
stated properties. This implies the conclusions regarding P
n
.
(b) Multiplying (A) th rough by .1 x
2
/
b1
yields
Œ.1 x
2
/
b
P
0
n
0
D n.n C 2b 1/.1 x
2
/
b1
P
n
: .E/
(c) Therefore,
Œ.1 x
2
/
b
P
0
m
0
D m.m C 2b 1/.1 x
2
/
b1
P
m
: .F/
Subtr act P
n
times (F) from P
m
times (E) to obtain (B).
(d) Int egrating the left side of (B) by parts over Œ1; 1 yields zero, which implies the conclusion.
7.2.32. (a) Let Ly D .1 C˛x
3
/y
00
Cˇx
2
y
0
Cxy. If y D
1
X
nD0
a
n
x
n
, then Ly D
1
X
nD2
n.n 1/a
n
x
n2
C
1
X
nD0
p.n/a
n
x
nC1
D 2a
2
C
1
X
nD0
Œ.n C 3/.n C 2/a
nC3
C p.n/a
n
x
nC1
D 0 if and only if a
2
D 0 and
a
nC3
D
p.n/
.n C 3/.n C 2/
a
n
for n 0.
7.2.34. p.r / D 2r.r 1/ 10r 8 D 2.r C 2/
2
; (A)
m1
Y
j D0
p.3j /
3j C 2
D
m1
Y
j D0
.2/.3j C 2/
2
3j C 2
D
.1/
m
2
m
m1
Y
j D0
.3j C 2/; (B)
m1
Y
j D0
p.3j C 1/
3j C 4
D
m1
Y
j D0
.2/.3j C 3/
2
3j C 4
D
.1/
m
2
m
.mŠ/
2
Q
m1
j D0
.3j C 4/
. Su bstituting (A)
and (B) into the result of Exercise 7 .2.32(c) yields
y D a
0
1
X
mD0
2
3
m
2
4
m1
Y
j D0
.3j C 2/
3
5
x
3m
C a
1
1
X
mD0
6
m
Q
m1
j D0
.3j C 4/
x
3mC1
.
7.2.36. p.r/ D 2r.r 1/ C 6r C24 D 2.r 6/.r C 2/; (A)
m1
Y
j D0
p.3j /
3j C 2
D
m1
Y
j D0
.6/.j 2/.
(B)
m1
Y
j D0
p.3j C 1/
3j C 4
D
m1
Y
j D0
.6/.j C 1/.3j 5/
3j C 4
D .1/
m
6
m
m
m1
Y
j D0
3j 5
3j C 4
. Substituting (A) and
(B) i nto the result of Exercise 7.2.32(c) yields
y D a
0
.1 4x
3
C 4x
6
/ C a
1
1
X
mD0
2
m
2
4
m1
Y
j D0
3j 5
3j C 4
3
5
x
3mC1
.
7.2.38. (a) Let Ly D .1 C ˛x
kC2
/y
00
C ˇx
kC1
y
0
C x
k
y. If y D
1
X
nD0
a
n
x
n
, then Ly D
1
X
nD2
n.n
1/a
n
x
n2
C
1
X
nD0
p.n/a
n
x
nCk
D
1
X
nDk
.n C k C 2/.n C k 1/a
nCkC2
x
nCk
C
1
X
nD0
Œ.n C k C 2/.n C
96 Chapter 7
Series Solutions of Linear Second Order Equations
k C 1/a
nCkC2
C p.n/a
n
x
nCk
D 0 if and only if a
k
D 0 for 2 n k C 1 and (A) a
nCkC1
D
p.n/
.n C k C 2/.n C k C 1/
a
n
for n 0.
(b) If a
n
D 0 the a
nC.kC2/m
D 0 for all m 0, from (A).
7.2.40. k D 2 and p.r/ D 1; (A)
m1
Y
j D0
p.4j /
4j C 3
D
1
Q
m1
j D0
.4j C 3/
; (B)
m1
Y
j D0
p.4j C 1/
.4j C 5/
D
1
Q
m1
j D0
4j C 5
.
Substituting (A) and (B) into the result of Exercise t.2.38(c) yields
y D a
0
1
X
mD0
.1/
m
x
4m
4
m
Q
m1
j D0
.4j C 3/
C a
1
1
X
mD0
.1/
m
x
4mC1
4
m
Q
m1
j D0
.4j C 5/
.
7.2.42. k D 6 and p.r/ D r.r 1/16r C72 D .r 9/.r 8/; (A)
m1
Y
j D0
p.8j /
8j C 7
D
m1
Y
j D0
8.j 1/.8j 9/
8j C 7
;
(B)
m1
Y
j D0
p.8j C 1/
.8j C 9/
D
m1
Y
j D0
8.j 1/.8j 7/
8j C 9
;
Substituting (A) and (B) in to the result of Exercise 7.2.38(c) yields
y D a
0
1
9
7
x
8
C a
1
x
7
9
x
9
.
7.2.44. k D 4 and p.r/ D r C 6; (A)
m1
Y
j D0
p.6j /
6j C 5
D
m1
Y
j D0
6.j C 1/
6j C 5
D
6
m
Q
m1
j D0
.6j C 5/
;
(B)
m1
Y
j D0
p.6j C 1/
.6j C 7/
D 1;
Substituting (A) and (B) in to the result of Exercise 7.2.38(c) yields
y D a
0
1
X
mD0
.1/
m
x
6m
Q
m1
j D0
.6j C 5/
C a
1
1
X
mD0
.1/
m
x
6mC1
6
m
.
7.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II
7.3.2. I f y D
1
X
nD0
a
n
x
n
, then .1 C x C 2x
2
/y
00
C .2 C 8x/y
0
C 4y D
1
X
nD2
n.n 1/a
n
x
n2
C
1
X
nD2
n.n
1/a
n
x
n1
C 2
1
X
nD2
n.n 1/a
n
x
n
C 2
1
X
nD1
na
n
x
n1
C 8
1
X
nD1
na
n
x
n
C 4
1
X
nD0
a
n
x
n
D
1
X
nD0
.n C 2/.n C
1/.a
nC2
C a
nC1
C 2a
n
/x
n
D 0 if a
nC2
D a
nC1
2a
n
, a
n
0. Star ting with a
0
D 1 and a
1
D 2
yields y D 1 C 2x 4x
3
C 4x
4
C 4x
5
12x
6
C 4x
7
C .
7.3.4. If y D
1
X
nD0
a
n
x
n
, then .1 Cx C3x
2
/y
00
C.2 C15x/y
0
C12y D
1
X
nD2
n.n 1/a
n
x
n2
C
1
X
nD2
n.n
1/a
n
x
n1
C 3
1
X
nD2
n.n 1/a
n
x
n
C 2
1
X
nD1
na
n
x
n1
C 15
1
X
nD1
na
n
x
n
C 12
1
X
nD0
a
n
x
n
D
1
X
nD0
Œ.n C 2/.n C
1/a
nC2
C.n C1/.n C2/a
nC1
C3.n C2/
2
a
n
x
n
D 0 if a
nC2
D a
nC1
3.n C 2/
n C 1
a
n
, a
n
0. Starting
with a
0
D 0 and a
1
D 1 yields y D x x
2
7
2
x
3
C
15
2
x
4
C
45
8
x
5
261
8
x
6
C
207
16
x
7
C .
Section 7.3
Series So lutions Near an Ordinary Poin t II
97
7.3.6. If y D
1
X
nD0
a
n
x
n
, then .3 C 3x C x
2
/y
00
C .6 C 4x/y
0
C 2y D 3
1
X
nD2
n.n 1/a
n
x
n2
C
3
1
X
nD2
n.n 1/a
n
x
n1
C
1
X
nD2
n.n 1/a
n
x
n
C 6
1
X
nD1
na
n
x
n1
C 4
1
X
nD1
na
n
x
n
C 2
1
X
nD0
a
n
x
n
D
1
X
nD0
.n C
2/.n C 1/Œ3a
nC2
C 3a
nC1
C a
n
x
n
D 0 if a
nC2
D a
nC1
a
n
=3, a
n
0. Starting with a
0
D 7 and
a
1
D 3 yields y D 7 C 3x
16
3
x
2
C
13
3
x
3
23
9
x
4
C
10
9
x
5
7
27
x
6
1
9
x
7
C .
7.3.8. The equation is equivalent to .1 C t C 2t
2
/y
00
C .2 C 6t/y
0
C 2y D 0 with t D x 1. If
y D
1
X
nD0
a
n
t
n
, then .1 Ct C2t
2
/y
00
C.2 C6t/y
0
C2y D
1
X
nD2
n.n 1/a
n
t
n2
C
1
X
nD2
n.n 1/a
n
t
n1
C
2
1
X
nD2
n.n 1/a
n
t
n
C 2
1
X
nD1
na
n
t
n1
C 6
1
X
nD1
na
n
t
n
C 2
1
X
nD0
a
n
t
n
D
1
X
nD0
.n C 1/Œ.n C 2/a
nC2
C .n C
2/a
nC1
C2.nC1/a
n
t
n
D 0 if a
nC2
D a
nC1
2.n C 1/
n C 2
a
n
, a
n
0. Starting with a
0
D 1 and a
1
D 1
yields y D 1 .x 1/ C
4
3
.x 1/
3
4
3
.x 1/
4
4
5
.x 1/
5
C
136
45
.x 1/
6
104
63
.x 1/
7
C .
7.3.10. The equation is equivalent to .1 C t C t
2
/y
00
C .3 C 4t/y
0
C 2y D 0 with t D x 1. I f
y D
1
X
nD0
a
n
t
n
, then .1 Ct C t
2
/y
00
C.3 C4t/y
0
C 2y D
1
X
nD2
n.n 1/a
n
t
n2
C
1
X
nD2
n.n 1/a
n
t
n1
C
1
X
nD2
n.n1/a
n
t
n
C3
1
X
nD1
na
n
t
n1
C4
1
X
nD1
na
n
t
n
C2
1
X
nD0
a
n
t
n
D
1
X
nD0
.nC1/Œ.nC2/a
nC2
C.nC3/a
nC1
C
.n C 2/a
n
t
n
D 0 if a
nC2
D
n C 3
n C 2
a
nC1
a
n
, a
n
0. Starting with a
0
D 2 and a
1
D 1 yields y D
2 .x 1/
1
2
.x 1/
2
C
5
3
.x 1/
3
19
12
.x 1/
4
C
7
30
.x 1/
5
C
59
45
.x 1/
6
1091
630
.x 1/
7
C
7.3.12. The equation is equivalent to .1 C 2t C t
2
/y
00
C .1 C 7t/y
0
C 8y D 0 wi th t D x 1. If y D
1
X
nD0
a
n
t
n
, then .1C2t Ct
2
/y
00
C.1C7t/y
0
C8y D
1
X
nD2
n.n1/a
n
t
n2
C2
1
X
nD2
n.n1/a
n
t
n1
C
1
X
nD2
n.n
1/a
n
t
n
C
1
X
nD1
na
n
t
n1
C7
1
X
nD1
na
n
t
n
C8
1
X
nD0
a
n
t
n
D
1
X
nD0
Œ.nC2/.n C1/a
nC2
C.nC1/.2n C1/a
nC1
C
.nC2/.nC 4/a
n
t
n
D 0 if a
nC2
D
2n C 1
n C 2
a
nC1
n C 4
n C 1
a
n
, a
n
0. Starting wi th a
0
D 1 and a
1
D 2
yields y D 1 2.x 1/ 3.x 1/
2
C 8.x 1/
3
4.x 1/
4
42
5
.x 1/
5
C19.x 1/
6
604
35
.x 1/
7
C
7.3.16. If y D
1
X
nD0
a
n
x
n
, then .1x/y
00
.2x/y
0
Cy D
1
X
nD2
n.n1/a
n
x
n2
1
X
nD2
n.n1/a
n
x
n1
2
1
X
nD1
na
n
x
n1
C
1
X
nD1
na
n
x
n
C
1
X
nD0
a
n
x
n
D
1
X
nD0
Œ.nC2/.nC1/a
nC2
.nC2/.nC1/a
nC1
C.nC1/a
n
x
n
D
0 if a
nC2
D a
nC1
a
n
n C 2
,a
n
0.
98 Chapter 7
Series Solutions of Linear Second Order Equations
7.3.18. If y D
1
X
nD0
a
n
x
n
, then .1 C x
2
/y
00
C y
0
C 2y D
1
X
nD2
n.n 1/a
n
x
n2
C
1
X
nD2
n.n 1/a
n
x
n
C
1
X
nD1
na
n
x
n1
C 2
1
X
nD0
a
n
x
n
D
1
X
nD0
Œ.n C 2/.n C 1/a
nC2
C .n C 1/a
nC1
C .n
2
n C 2/a
n
x
n
D 0 if
a
nC2
D
1
n C 2
a
nC1
n
2
n C2
.n C 2/.n C 1/
a
n
.
7.3.20. The equation is equivalent to .3 C 2t/y
00
C .1 C 2t/y
0
.1 2t/y D 0 wit h t D x 1. If
y D
1
X
nD0
a
n
t
n
, then .3 C 2t/y
00
C .1 C 2t/y
0
.1 2t /y D 3
1
X
nD2
n.n 1/a
n
t
n2
C 2
1
X
nD2
n.n
1/a
n
t
n1
C
1
X
nD1
na
n
t
n1
C 2
1
X
nD1
na
n
t
n
1
X
nD0
a
n
t
n
C 2
1
X
nD0
a
n
t
nC1
D .6a
2
C a
1
a
0
/ C
1
X
nD1
Œ3.n C
2/.n C 1/a
nC2
C .n C 1/.2n C 1/a
nC1
C .2n 1/a
n
C 2a
n1
t
n
D 0 if a
2
D
a
1
a
0
6
and a
nC2
D
2n C 1
3.n C 2/
a
nC1
2n 1
3.n C 2/.n C 1/
a
n
2
3.n C 2/.n C 1/
a
n1
, n 1. Starting with a
0
D 1 and
a
1
D 2 yields y D 1 2.x 1/ C
1
2
.x 1/
2
1
6
.x 1/
3
C
5
36
.x 1/
4
73
1080
.x 1/
5
C .
7.3.22. The equation is equivalent to .1Ct/y
00
C.22t/y
0
C.3Ct/y D 0 wit h t D xC3. If y D
1
X
nD0
a
n
t
n
,
then .1 Ct/y
00
C.2 2t/y
0
C.3 Ct /y D
1
X
nD2
n.n 1/a
n
t
n2
C
1
X
nD2
n.n 1/a
n
t
n1
C2
1
X
nD1
na
n
t
n1
2
1
X
nD1
na
n
t
n
C3
1
X
nD0
a
n
t
n
C
1
X
nD0
a
n
t
nC1
D .2a
2
C2a
1
C3a
0
/ C
1
X
nD1
Œ.n C2/.nC1/a
nC2
C.n C2/.n C
1/a
nC1
.2n 3/a
n
C a
n1
t
n
D 0 if a
2
D
2a
1
C 3a
0
2
and a
nC2
D a
nC1
C
.2n 3/a
n
a
n1
.n C 2/.n C 1/
,
n 1. Starting with a
0
D 2 and a
1
D 2 yields
y D 2 2.x C3/ .x C 3/
2
C .x C 3/
3
11
12
.x C 3/
4
C
67
60
.x C 3/
5
C .
7.3.24. The equation is equivalent to .1C2t/y
00
C3y
0
C.1t/y D 0 with t D xC1. If y D
1
X
nD0
a
n
t
n
, then
.1C2t/y
00
C3y
0
C.1t/y D
1
X
nD2
n.n1/a
n
t
n2
C2
1
X
nD2
n.n1/a
n
t
n1
C3
1
X
nD1
na
n
t
n1
C
1
X
nD0
a
n
t
n
1
X
nD0
a
n
t
nC1
D .2a
2
C3a
1
Ca
0
/ C
1
X
nD1
Œ.n C2/.nC1/a
nC2
C.2n C3/.n C1/a
nC1
Ca
n
a
n1
t
n
D 0
if a
2
D
3a
1
C a
0
2
and a
nC2
D
2n C 3
n C 2
a
nC1
a
n
a
n1
.n C 2/.n C 1/
, n 1. Starting with a
0
D 2 and
a
1
D 3 yields y D 2 3.x C 1/ C
7
2
.x C 1/
2
5.x C 1/
3
C
197
24
.x C 1/
4
287
20
.x C 1/
5
C .
7.3.26. The equation is equivalent to .6 2t/y
00
C .3 C t /y D 0 with t D x 2. If y D
1
X
nD0
a
n
t
n
, then
Section 7.3
Series So lutions Near an Ordinary Poin t II
99
.6 2t/y
00
C .3 C t/y D 6
1
X
nD2
n.n 1/a
n
t
n2
2
1
X
nD2
n.n 1/a
n
t
n1
C 3
1
X
nD0
a
n
t
n
C
1
X
nD0
a
n
t
nC1
D
.12a
2
C 3a
0
/ C
1
X
nD1
Œ6.n C 2/.n C 1/a
nC2
2.n C 1/na
nC1
C 3a
n
C a
n1
t
n
D 0 if a
2
D
a
0
4
and a
nC2
D
n
3.n C 2/
a
nC1
3a
n
C a
n1
6.n C 2/.n C 1/
, n 1. Starting with a
0
D 2 and a
1
D 4 yields
y D 2 4.x 2/
1
2
.x 2/
2
C
2
9
.x 2/
3
C
49
432
.x 2/
4
C
23
1080
.x 2/
5
C .
7.3.28. The equation is equivalent to .2 C4t/y
00
.1 2t/y D 0 with t D x C4. If y D
1
X
nD0
a
n
t
n
, then
.2 C4t/y
00
.1 2t/y D 2
1
X
nD2
n.n 1/a
n
t
n2
C4
1
X
nD2
n.n 1/a
n
t
n1
1
X
nD0
a
n
t
n
C2
1
X
nD0
a
n
t
nC1
D
.4a
2
a
0
/ C
1
X
nD1
Œ2.n C 2/.n C 1/a
nC2
C 4.n C 1/na
nC1
a
n
C 2a
n1
t
n
D 0 if a
2
D
a
0
4
and
a
nC2
D
2n
n C 2
a
nC1
C
a
n
2a
n1
2.n C 2/.n C 1/
, n 1. Starting with a
0
D 1 and a
1
D 2 yield s y D
1 C 2.x C 1/
1
4
.x C 1/
2
C
1
2
.x C 1/
3
65
96
.x C 1/
4
C
67
80
.x C 1/
5
C.
N=5; b=zeros(N,1); b( 1)=-1;b(2)=2; b(3)=b(1)/4; for n=1:N-2 b(n+3)=-2*n*b(n+2) /(n+2)+(b(n+1)-
2*b(n))/(2*(n+2) *(n+1)); end
7.3.29. Let Ly D .1 C ˛x C ˇx
2
/y
00
C . C ıx/y
0
C y. If y D
1
X
nD0
a
n
x
n
, t hen Ly D
1
X
nD2
n.n
1/a
n
x
n2
C˛
1
X
nD2
n.n1/a
n
x
n1
Cˇ
1
X
nD2
n.n1/a
n
x
n
C
1
X
nD1
na
n
x
n1
Cı
1
X
nD1
na
n
x
n
C
1
X
nD0
a
n
x
n
D
1
X
nD0
.n C 2/.n C 1/a
nC2
x
n
C ˛
1
X
nD0
.n C 1/na
nC1
x
n
C ˇ
1
X
nD0
n.n 1/a
n
x
n
C
1
X
nD0
.n C 1/a
nC1
x
n
C
ı
1
X
nD0
na
n
x
n
C
1
X
nD0
a
n
x
n
D
1
X
nD0
b
n
x
n
, where b
n
D .n C 1/.n C 2/a
nC2
C .n C 1/.˛n C /a
nC1
C
Œˇn.n 1/ C ın C a
n
, which implies the conclusion.
7.3.30. (a) Let D , ı D 4ˇ, and D in Exercise 7.3.29 t o obtain (B).
(b) If a
n
D c
1
r
n
1
C c
2
r
n
2
, then a
nC2
C ˛a
nC1
C ˇa
n
D c
1
r
n
1
.r
2
1
C ˛r C ˇ/ C c
2
r
n
2
.r
2
2
C ˛r
2
C
ˇ/ D c
1
r
n
1
P
0
.r
1
/ C c
2
r
n
2
P
0
.r
2
/ D 0, so fa
n
g satisfies (B). Since 1=r
1
and 1=r
2
are t he zeros of P
0
,
Theorem 7.2.1 implies that
P
1
nD0
.c
1
r
n
1
C c
2
r
n
2
/x
n
is a solution of (A) on .; /.
(c) If jxj < , then jr
1
xj < and jr
2
xj < 1, so
1
X
nD0
r
n
i
x
n
D
1
1 r
i
x
D y
i
, i D 1; 2. Therefore, (b)
implies that fy
1
; y
2
g is a fundamental set of solutions of (A ) on .; /.
(d) (A) can writ ten as P
0
y
00
C 2P
0
0
y
0
C P
00
0
y D .P
0
y/
00
D 0. Therefore,P
0
y D a C bx where a and
b are arbitrary constants, and a par tial fraction expansion shows that the general solution of (A) on any
inter val not containing 1=r
1
or 1=r
2
is y D
a C bx
P
0
.x/
D
c
1
1 r
1
x
C
c
2
1 r
2
x
D c
1
y
1
Cc
2
y
2
.
(e) If a
n
D c
1
r
n
1
Cc
2
r
n
2
, then a
nC2
C˛a
nC1
Cˇa
n
D c
1
r
n
1
.r
2
1
C˛r Cˇ/ Cc
2
r
n
1
Œ.n C2/r
2
1
C˛.n C
1/r
2
C ˇn/ D .c
1
C nc
2
/r
n
1
P
0
.r
1
/ C c
2
r
n
1
P
0
0
.r
1
/ D 0, so fa
n
g satisfies (B). Since 1=r
1
is the only zero
100 Chapter 7
Series Solutions of Linear Second Order Equations
of P
0
, Theorem 7.2.1 implies that
P
1
nD0
.c
1
C c
2
n/r
n
1
/x
n
is a solution of (A) on .; /.
(f) If jxj < , th en jr
1
xj < , so
1
X
nD0
r
n
1
x
n
D
1
1 r
1
x
D y
1
. D ifferentiating this and multiplying
the result by x shows that
1
X
nD0
nr
n
1
x
n
D
r
1
x
.1 r
1
x/
2
D r
1
y
2
. Therefore, (e) implies that fy
1
; y
2
g is a
fundamental set of solutions of (A) on .; /.
(g) The argument is the same as in (c), but now the partial fracti on expansion can be written as y D
a C bx
P
0
.x/
D
c
1
1 r
1
x
C
c
2
x
.1 r
2
x/
2
D c
1
y
1
C c
2
y
2
.
7.3.32. If y D
1
X
nD0
a
n
x
n
, then y
00
C 2xy
0
C .3 C 2x
2
/y D
1
X
nD2
n.n 1/a
n
x
n2
C 2
1
X
nD1
na
n
x
n
C
3
1
X
nD0
a
n
x
n
C2
1
X
nD0
a
n
x
nC2
D .2a
2
C3a
0
/ C.6a
3
C5a
1
/x C
1
X
nD2
Œ.n C2/.n C1/a
nC2
C.2n C3/a
n
C
2a
n2
x
n
D 0 if a
2
D 3a
0
=2, a
3
D 5a
1
=6, and a
nC2
D
.2n C 3/a
n
C 2a
n2
.n C 2/.n C1/
, n 2. Starting
with a
0
D 1 and a
1
D 2 yields y D 1 2x
3
2
x
2
C
5
3
x
3
C
17
24
x
4
11
20
x
5
C .
7.3.34. If y D
1
X
nD0
a
n
x
n
, then y
00
C5xy
0
.3x
2
/y D
1
X
nD2
n.n1/a
n
x
n2
C5
1
X
nD1
na
n
x
n
3
1
X
nD0
a
n
x
n
C
1
X
nD0
a
n
x
nC2
D .2a
2
3a
0
/ C .6a
3
C 2a
1
/x C
1
X
nD2
Œ.n C 2/.n C 1/a
nC2
C .5n 3/a
n
C a
n2
x
n
D 0
if a
2
D 3a
0
=2, a
3
D a
1
=3, and a
nC2
D
.5n 3/a
n
C a
n2
.n C 2/.n C 1/
, n 2. St arting with a
0
D 6 and
a
1
D 2 yields y D 6 2x C 9x
2
C
2
3
x
3
23
4
x
4
3
10
x
5
C .
7.3.36. If y D
1
X
nD0
a
n
x
n
, then y
00
3xy
0
C .2 C 4x
2
/y D
1
X
nD2
n.n 1/a
n
x
n2
3
1
X
nD1
na
n
x
n
C
2
1
X
nD0
a
n
x
n
C4
1
X
nD0
a
n
x
nC2
D .2a
2
C2a
0
/ C .6a
3
a
1
/x C
1
X
nD2
Œ.n C 2/.n C 1/a
nC2
.3n 2/a
n
C
4a
n2
x
n
D 0 if a
2
D a
0
, a
3
D a
1
=6, and a
nC2
D
.3n 2/a
n
4a
n2
.n C 2/.n C 1/
, n 2. Starting with a
0
D 3
and a
1
D 6 yields y D 3 C 6x 3x
2
C x
3
2x
4
17
20
x
5
C .
7.3.38. If y D
1
X
nD0
a
n
x
n
, t hen 3y
00
C 2xy
0
C .4 x
2
/y D 3
1
X
nD2
n.n 1/a
n
x
n2
C 2
1
X
nD1
na
n
x
n
C
4
1
X
nD0
a
n
x
n
1
X
nD0
a
n
x
nC2
D .6a
2
C4a
0
/ C.18a
3
C6a
1
/x C
1
X
nD2
Œ3.n C2/.n C1/a
nC2
C.2n C4/a
n
a
n2
x
n
D 0 if a
2
D 2a
0
=3, a
3
D a
1
=3, and a
nC2
D
.2n C 4/a
n
a
n2
3.n C 2/.n C 1/
, n 2. Starting with
a
0
D 2 and a
1
D 3 yields y D 2 C 3x C
4
3
x
2
x
3
19
54
x
4
C
13
60
x
5
C .
Section 7.3
Series Solutions Near an Ordinary Point II
101
7.3.40. If y D
1
X
nD0
a
n
x
n
, then .1 C x/y
00
C x
2
y
0
C .1 C 2x/y D
1
X
nD2
n.n 1/a
n
x
n2
C
1
X
nD2
n.n
1/a
n
x
n1
C
1
X
nD1
na
n
x
nC1
C
1
X
nD0
a
n
x
n
C2
1
X
nD0
a
n
x
nC1
D .2a
2
Ca
0
/ C
1
X
nD1
Œ.n C2/.nC1/a
nC2
C.n C
1/na
nC1
Ca
n
C.nC1/a
n1
x
n
D 0 if a
2
D a
0
=2 and a
nC2
D
.n C 1/na
nC1
C a
n
C .n C 1/a
n1
.n C 2/.n C1/
,
n 1. Starting with a
0
D 2 and a
1
D 3 yields y D 2 C 3x C x
2
1
6
x
3
3
4
x
4
C
31
120
x
5
C .
7.3.42. If y D
1
X
nD0
a
n
x
n
, then .1Cx
2
/y
00
C.2Cx
2
/y
0
Cxy D
1
X
nD2
n.n1/a
n
x
n2
C
1
X
nD2
n.n1/a
n
x
n
C
2
1
X
nD1
na
n
x
n1
C
1
X
nD1
na
n
x
nC1
C
1
X
nD1
a
n
x
nC1
D .2a
2
C2a
1
/C
1
X
nD1
Œ.nC2/.nC1/a
nC2
C2.nC1/a
nC1
C
n.n1/a
n
Cna
n1
x
n
D 0 if a
2
D a
1
and a
nC2
D
Œ2.n C 1/a
nC1
C n.n 1/a
n
Cna
n1
.n C 2/.n C1/
, n 1.
Starti ng with a
0
D 3 and a
1
D 5 yields y D 3 C 5x 5x
2
C
23
6
x
3
23
12
x
4
C
11
30
x
5
C .
7.3.44. The equation is equivalent to y
00
C.1 C3t
2
/y
0
C.1 C2t/y D 0 with t D x 2. If y D
1
X
nD0
a
n
t
n
,
then y
00
C.1C3t
2
/y
0
C.1C2t/y D
1
X
nD2
n.n1/a
n
t
n2
C
1
X
nD1
na
n
t
n1
C3
1
X
nD1
na
n
t
nC1
C
1
X
nD0
a
n
t
n
C
2
1
X
nD0
a
n
t
nC1
D .2a
2
Ca
1
Ca
0
/ C
1
X
nD1
Œ.n C2/.nC1/a
nC2
C.n C1/a
nC1
Ca
n
C.3n 1/a
n1
t
n
D 0
if a
2
D .a
1
Ca
0
/=2 and a
nC2
D
Œ.n C 1/a
nC1
C a
n
C .3n 1/a
n1
.n C 2/.n C 1/
, n 1. Starting with a
0
D 2
and a
1
D 3 yields
y D 2 3.x C 2/ C
1
2
.x C 2/
2
1
3
.x C 2/
3
C
31
24
.x C 2/
4
53
120
.x C 2/
5
C .
7.3.46. The equation is equivalent to .1t
2
/y
00
.78tCt
2
/y
0
Cty D 0 with t D xC2. I f y D
1
X
nD0
a
n
t
n
,
then .1 t
2
/y
00
.7 8t C t
2
/y
0
C ty D
1
X
nD2
n.n 1/a
n
t
n2
1
X
nD2
n.n 1/a
n
t
n
7
1
X
nD1
na
n
t
n1
C
8
1
X
nD1
na
n
t
n
1
X
nD1
na
n
t
nC1
C
1
X
nD0
a
n
t
nC1
D .2a
2
7a
1
/C
1
X
nD1
Œ.nC2/.nC1/a
nC2
7.nC1/a
nC1
n.n
9/a
n
.n 2/a
n1
t
n
D 0 if a
2
D 7a
1
=2 and a
nC2
D
Œ7.n C 1/a
nC1
Cn.n 9/a
n
C .n 2/a
n1
.n C 2/.n C 1/
,
n 1. Starting with a
0
D 2 and a
1
D 1 yields
y D 2 .x C 2/
7
2
.x C 2/
2
43
6
.x C 2/
3
203
24
.x C 2/
4
167
30
.x C 2/
5
C .
7.3.48. The equation is equivalent to .1 C3t C2t
2
/y
00
.3 Ct t
2
/y
0
.3 Ct/y D 0 with t D x 1. If
y D
1
X
nD0
a
n
t
n
, then .1 C3t C2t
2
/y
00
.3 Ct t
2
/y
0
.3 Ct/y D
1
X
nD2
n.n 1/a
n
t
n2
C3
1
X
nD2
n.n
102 Chapter 7
Series Solutions of Linear Second Order Equations
1/a
n
t
n1
C2
1
X
nD2
n.n1/a
n
t
n
3
1
X
nD1
na
n
t
n1
1
X
nD1
na
n
t
n
C
1
X
nD1
na
n
t
nC1
3
1
X
nD0
a
n
t
n
1
X
nD0
a
n
t
nC1
D
.2a
2
3a
1
3a
0
/C
1
X
nD1
Œ.nC2/.nC1/a
nC2
C3.n
2
1/a
nC1
C.2n
2
3n3/.nC1/a
n
C.n2/a
n1
t
n
D 0
if a
2
D 3.a
1
C a
0
/=2 and a
nC2
D
Œ3.n
2
1/a
nC1
C .2n
2
3n 3/.n C 1/a
n
C .n 2/a
n1
.n C 2/.n C 1/
, n
1. Starting with a
0
D 1 and a
1
D 0 yields y D 1 C
3
2
.x 1/
2
C
1
6
.x 1/
3
1
8
.x 1/
5
C .
7.4 REGULAR SINGULAR POI N TS; EULER EQUATIONS
7.4.2. p.r/ D r .r 1/ 7r C 7 D .r 7/.r 1/; y D c
1
x C c
2
x
7
.
7.4.4. p.r/ D r .r 1/ C 5r C 4 D .r C 2/
2
;y D x
2
.c
1
C c
2
ln x/
7.4.6. p.r/ D r .r 1/ 3r C 13 D .r 2/
2
C 9; y D x
2
Œc
1
cos.3 ln x/ C c
2
sin.3 l n x/.
7.4.8. p.r/ D 12r.r 1/ 5r C 6 D .3r 2/.4r 3/; y D c
1
x
2=3
Cc
2
x
3=4
.
7.4.10. p.r/ D 3r.r 1/ r C 1 D .r 1/.3r 1/; y D c
1
x C c
2
x
1=3
.
7.4.12. p.r/ D r.r 1/ C 3r C 5 D .r C 1/
2
C 4; y D
1
x
Œc
1
cos.2 ln x/ C c
2
sin.2 l n x
7.4.14. p.r/ D r.r 1/ r C 10 D .r 1/
2
C 9; y D x Œc
1
cos.3 ln x/ C c
2
sin.3 ln x/.
7.4.16. p.r/ D 2r.r 1/ C 3r 1 D .r C 1/.2r 1/; y D
c
1
x
C c
2
x
1=2
.
7.4.18. p.r/ D 2r.r 1/C10r C9 D 2.r C2/
2
C1; y D
1
x
2
c
1
cos
1
p
2
ln x
C c
2
sin
1
p
2
ln x

.
7.4.20. If p.r/ D ar .r 1/ C br C c D a.r r
1
/
2
, then (A) p.r
1
/ D p
0
.r
1
/ D 0. If y D ux
r
1
, then
y
0
D u
0
x
r
1
C r
1
ux
r
1
1
and y
00
D u
00
x
r
1
C 2r
1
u
0
x
r
1
1
1
C r
1
.r
1
1/x
r
1
2
1
, so
ax
2
y
00
C bxy
0
C cy D ax
r
1
C2
u
00
C .2ar
1
C b/x
r
1
C1
u
0
C .ar
1
.r
1
1/ C br
1
C c/ x
r
1
u
D ax
r
1
C2
u
00
C p
0
.r
1
/x
r
1
C1
1
u
0
Cp.r/x
r
1
u D ax
r
1
C2
u
00
;
from (A). Therefore,u
00
D 0, so u D c
1
C c
2
x and y D x
r
1
.c
1
C c
2
x/.
7.4.22. (a) If t D x 1 and Y.t/ D y.t C 1/ D y.x/, then .1 x
2
/y
00
2xy
0
C ˛ C 1/y D
t.2 C t/
d
2
Y
dt
2
2.1 C t /
d Y
dt
C ˛ C 1/Y D 0, so y satisfies Legendre’s equation if and only if Y
satisfies (A) t.2Ct/
d
2
Y
dt
2
C2.1Ct/
d Y
dt
˛ C1/Y D 0. Since (A) can be rewritten as t
2
.2Ct/
d
2
Y
dt
2
C
2t.1 C t/
d Y
dt
˛ C 1/tY D 0, (A) has a regular singular point at t D 0
0
.
(b) If t D x C1 and Y.t/ D y.t 1/ D y.x/, then .1 x
2
/y
00
2xy
0
C˛ C1/y D t.2 t/
d
2
Y
dt
2
C
2.1 t/
d Y
dt
C˛ C1/Y , so y satisfies Legendre’s equation if and only if Y satisfies (B) t.2t/
d
2
Y
dt
2
C
Section 7.5
The Method of Frobeni us I
103
2.1 t/
d Y
dt
C˛ C1/Y , Since (B) can be rewritten as (B) t
2
.2t /
d
2
Y
dt
2
C2t.1 t/
d Y
dt
C˛ C1/tY ,
(B) has a regular singular point at t D 0
0
.
7.5 The Method of Frobenius I
7.5.2. p
0
.r/ D r.3r 1/; p
1
.r/ D 2.r C 1/; p
2
.r/ D 4.r C 2/.
a
1
.r/ D
2
3r C 2
; a
n
.r/ D
2a
n1
.r/ 4a
n2
.r/
3n C 3r 1
, n 1.
r
1
D 1=3; a
1
.1=3/ D 2=3; a
n
.1=3/ D
2a
n1
.1=3/ 4a
n2
.1=3/
3n
, n 1;
y
1
D x
1=3
1
2
3
x C
8
9
x
2
40
81
x
3
C
.
r
2
D 0; a
1
.0/ D 1; a
n
.0/ D
2a
n1
.0/ 4a
n2
.0/
3n 1
, n 1;
y
2
D 1 x C
6
5
x
2
4
5
x
3
C .
7.5.4. p
0
.r/ D .r C 1/.4r 1/; p
1
.r/ D 2.r C 2/; p
2
.r/ D 4r C 7.
a
1
.r/ D
2
4r C 3
; a
n
.r/ D
2
4n C 4r 1
a
n1
.r/
1
n C r C 1
a
n2
.r/, n 1.
r
1
D 1=4; a
1
.1=4/ D 1=2; a
n
.1=4/ D
1
2n
a
n1
.1=4/
4
4n C 5
a
n2
.1=4/, n 1;
y
1
D x
1=4
1
1
2
x
19
104
x
2
C
1571
10608
x
3
C
.
r
2
D 1; a
1
.1/ D 2; a
n
.1/ D
2
4n 5
a
n1
.1/
1
n
a
n2
.1/, n 1;
y
2
D x
1
1 C 2x
11
6
x
2
1
7
x
3
C
.
7.5.6. p
0
.r/ D r.5r 1/; p
1
.r/ D .r C 1/
2
; p
2
.r/ D 2.r C 2/.5r C 9/.
a
1
.r/ D
r C 1
5r C 4
; a
n
.r/ D
n C r
5n C 5r 1
a
n1
.r/ 2a
n2
.r/, n 1.
r
1
D 1=5; a
1
.1=5/ D 6=25; a
n
.1=5/ D
5n C 1
25n
a
n1
.1=5/ 2a
n2
.1=5/, n 1;
y
1
D x
1=5
1
6
25
x
1217
625
x
2
C
41972
46875
x
3
C
.
r
2
D 0; a
1
.0/ D 1=4; a
n
.0/ D
n
5n 1
a
n1
.0/ 2a
n2
.0/, n 1;
y
2
D x
1
4
x
2
35
18
x
3
C
11
12
x
4
C .
7.5.8. p
0
.r/ D .3r 1/.6r C 1/; p
1
.r/ D .3r C2/.6r C 1/; p
2
.r/ D 3r C 5.
a
1
.r/ D
6r C 1
6r C 7
; a
n
.r/ D
6n C 6r 5
6n C 6r C 1
a
n1
.r/
1
6n C 6r C 1
a
n2
.r/, n 1.
r
1
D 1=3; a
1
.1=3/ D 1=3; a
n
.1=3/ D
2n 1
2n C 1
a
n1
.1=3/
1
6n C 3
a
n2
.1=3/, n 1;
y
1
D x
1=3
1
1
3
x C
2
15
x
2
5
63
x
3
C
.
r
2
D 1=6; a
1
.1=6/ D 0; a
n
.1=6/ D
n 1
n
a
n1
.1=6/
1
6n
a
n2
.1=6/, n 1;
y
2
D x
1=6
1
1
12
x
2
C
1
18
x
3
C
.
104 Chapter 7
Series Solutions of Linear Second Order Equations
7.5.10. p
0
.r/ D .2r C1/.5r 1/; p
1
.r/ D .2r 1/.5r C 4/; p
2
.r/ D 2.2r C 5/.5r 1/.
a
1
.r/ D
2r 1
2r C 3
; a
n
.r/ D
2n C 2r 3
2n C 2r C 1
a
n1
.r/
10n C 10r 22
5n C 5r 1
a
n2
.r/, n 1.
r
1
D 1=5; a
1
.1=5/ D 3=17; a
n
.1=5/ D
10n 13
10n C 7
a
n1
.1=5/
2n 4
n
a
n2
.1=5/, n 1;
y
1
D x
1=5
1 C
3
17
x
7
153
x
2
547
5661
x
3
C
.
r
2
D 1=2; a
1
.1=2/ D 1; a
n
.1=2/ D
n 2
n
a
n1
.1=2/
20n 54
10n 7
a
n2
.1=2/, n 1;
y
2
D x
1=2
1 C x C
14
13
x
2
556
897
x
3
C
.
7.5.14. p
0
.r/ D .r C 1/.2r 1/; p
1
.r/ D 2r C 1; a
n
.r/ D
1
n C r C 1
a
n1
.r/.
r
1
D 1=2; a
n
.1=2/ D
2
2n C 3
a
n1
.1=2/; y
1
D x
1=2
1
X
nD0
.2/
n
Q
n
j D1
.2j C 3/
x
n
.
r
2
D 1; a
n
.1/ D
1
n
a
n1
.1/; y
2
D x
1
1
X
nD0
.1/
n
x
n
.
7.5.16. p
0
.r/ D .r C 2/.2r 1/; p
1
.r/ D r C 3; a
n
.r/ D
1
2n C 2r 1
a
n1
.r/.
r
1
D 1=2; a
n
.1=2/ D
1
2n
a
n1
.1=2/; y
1
D x
1=2
1
X
nD0
.1/
n
2
n
x
n
.
r
2
D 2; a
n
.2/ D
1
2n 5
a
n1
.2/; y
2
D
1
x
2
1
X
nD0
.1/
n
Q
n
j D1
.2j 5/
x
n
.
7.5.18. p
0
.r/ D .r 1/.2r 1/; p
1
.r/ D 2; a
n
.r/ D
2
.n C r 1/.2n C 2r 1/
a
n1
.r/.
r
1
D 1; a
n
.1/ D
2
n.2n C 1
/a
n1
.1/; y
1
D x
1
X
nD0
2
n
Q
n
j D1
.2j C 1/
x
n
.
r
2
D 1=2; a
n
.1=2/ D
2
n.2n 1
/a
n1
.1=2/; y
2
D x
1=2
1
X
nD0
2
n
Q
n
j D1
.2j 1/
x
n
.
7.5.20. p
0
.r/ D .r 1/.3r C 1/; p
1
.r/ D r 3; a
n
.r/ D
n C r 4
.n C r 1/.3n C 3r C 1/
a
n1
.r/.
r
1
D; a
n
.1/ D
n 3
n.3n C 4/
a
n1
.1/; y
1
D x
1 C
2
7
x C
1
70
x
2
.
r
2
D 1=3; a
n
.1=3/ D
3n 13
3n.3n 4/
a
n1
.1=3/; y
2
D x
1=3
1
X
nD0
.1/
n
3
n
0
@
n
Y
j D1
3j 13
3j 4
1
A
x
n
.
7.5.22. p
0
.r/ D .r 1/.4r 1/; p
1
.r/ D r.r C 2/; a
n
.r/ D
n C r C 1
4n C 4r 1
a
n1
.r/.
r
1
D 1; a
n
.1/ D
n C 2
4n C 3
a
n1
.1/; y
1
D x
1
X
nD0
.1/
n
.n C 2/Š
2
Q
n
j D1
.4j C 3/
x
n
.
r
2
D 1=4; a
n
.1=4/ D
4n C 5
16n
a
n1
.1=4/; y
2
D x
1=4
1
X
nD0
.1/
n
16
n
n
Y
j D1
.4j C 5/x
n
Section 7.5
The Method of Frobeni us I
105
7.5.24. p
0
.r/ D .r C 1/.3r 1/; p
1
.r/ D 2.r C 2/.2r C 3/; a
n
.r/ D 2
2n C2r C 1
3n C3r 1
a
n1
.r/.
r
1
D 1=3; a
n
.1=3/ D 2
6n C 5
9n
a
n1
.1=3/; y
1
D x
1=3
1
X
nD0
.1/
n
2
9
n
0
@
n
Y
j D1
.6j C 5/
1
A
x
n
;
r
2
D 1; a
n
.1/ D 2
2n 1
3n 4
a
n1
.1/; y
2
D x
1
1
X
nD0
.1/
n
2
n
0
@
n
Y
j D1
2j 1
3j 4
1
A
x
n
7.5.28. p
0
.r/ D .2r 1/.4r 1/; p
1
.r/ D .r C 1/
2
; a
n
.r/ D
.n C r /
2
.2n C 2r 1/.4n C 4r 1/
a
n1
.r/.
r
1
D 1=2; a
n
.1=2/ D
4n
2
C 4n C 1
8n.4n C 1/
a
n1
.1=2/; y
1
D x
1=2
1
9
40
x C
5
128
x
2
245
39936
x
3
C
.
r
2
D 1=4; a
n
.1=4/ D
16n
2
C 8n C 1
32n.4n 1/
a
n1
.1=4/; y
2
D x
1=4
1
25
96
x C
675
14336
x
2
38025
5046272
x
3
C
.
7.5.30. p
0
.r/ D .2r 1/.2r C 1/; p
1
.r/ D .2r C 1/.3r C 1/; a
n
.r/ D
.3n C 3r 2/
.2n C 2r C 1/
a
n
.r/.
r
1
D 1=2; a
n
.1=2/ D
6n 1
4.n C 1/
a
n1
.1=2/; y
1
D x
1=2
1
5
8
x C
55
96
x
2
935
1536
x
3
C
.
r
2
D 1=2; a
n
.1=2/ D
6n 7
4n
a
n1
.1=2/; y
2
D x
1=2
1 C
1
4
x
5
32
x
2
55
384
x
3
C
.
7.5.32. p
0
.r/ D .2r C1/.3r C1/; p
1
.r/ D .r C1/.r C2/; a
n
.r/ D
.n C r /.n C r C 1/
.2n C 2r C 1/.3n C 3r C 1/
a
n
.r/.
r
1
D 1=3; a
n
.1=3/ D
.3n 1/.3n C 2/
9n.6n C 1/
a
n1
.1=3/; y
1
D x
1=3
1
10
63
x C
200
7371
x
2
17600
3781323
x
3
C
.
r
2
D 1=2; a
n
.1=2/ D
.2n 1/.2n C 1/
4n.6n 1/
a
n1
.1=2/; y
2
D x
1=2
1
3
20
x C
9
352
x
2
105
23936
x
3
C
.
7.5.34. p
0
.r/ D .2r 1/.4r 1/; p
2
.r/ D .2r C 3/.4r C3/; a
2m
.r/ D
8m C4r 5
8m C4r 1
a
2m2
.r/.
r
1
D 1=2; a
2m
.1=2/ D
8m 3
8m C 1
a
2m2
.1=2/; y
1
D x
1=2
1
X
mD0
0
@
m
Y
j D1
8j 3
8j C 1
1
A
x
2m
.
r
2
D 1=4; a
2m
.1=4/ D
2m 1
2m
a
2m2
.1=4/; y
2
D x
1=4
1
X
mD0
1
2
m
0
@
m
Y
j D1
.2j 1/
1
A
x
2m
7.5.36. p
0
.r/ D r.3r 1/; p
2
.r/ D .r 4/.r C 2/; a
2m
.r/ D
2m C r 6
6m C 3r 1
a
2m2
.r/.
r
1
D 1=3; a
2m
.1=3/ D
6m 17
18m
a
2m2
.1=3/; y
1
D x
1=3
1
X
mD0
.1/
m
18
m
0
@
m
Y
j D1
.6j 17/
1
A
x
2m
.
r
2
D 0; a
2m
.0/ D
2m 6
6m 1
a
2m2
.0/; y
2
D 1 C
4
5
x
2
C
8
55
x
4
7.5.38. p
0
.r/ D .2r 1/.3r 1/; p
2
.r/ D .r C 1/.3r C 5/; a
2m
.r/ D
2m C r 1
4m C 2r 1
a
2m2
.r/.
106 Chapter 7
Series Solutions of Linear Second Order Equations
r
1
D 1=2; a
2m
.1=2/ D
4m 1
8m
a
2m2
.1=2/; y
1
D x
1=2
1
X
mD0
1
8
m
0
@
m
Y
j D1
.4j 1/
1
A
x
2m
.
r
2
D 1=3; a
2m
.1=3/ D
6m 2
12m 1
a
2m2
.1=3/; y
2
D x
1=3
1
X
mD0
2
m
0
@
m
Y
j D1
3j 1
12j 1
1
A
x
2m
.
7.5.40. p
0
.r/ D .2r 1/.2r C 1/; p
1
.r/ D .r C1/.2r C3/; a
2m
.r/ D
2m C r 1
4m C2r C 1
a
2m2
.r/.
r
1
D 1=2; a
2m
.1=2/ D
4m 1
4.2m C 1/
a
2m2
.1=2/; y
1
D x
1=2
1
X
mD0
.1/
m
4
m
0
@
m
Y
j D1
4j 1
2j C 1
1
A
x
2m
.
r
2
D 1=2; a
2m
.1=2/ D
4m 3
8m
a
2m2
.1=2/; y
2
D x
1=2
1
X
mD0
.1/
m
8
m
0
@
m
Y
j D1
.4j 3/
1
A
x
2m
7.5.42. p
0
.r/ D .r C 1/.3r 1/; p
1
.r/ D .r 1/.3r C 5/; a
2m
.r/ D
2m C r 3
2m C r C 1
a
2m2
.r/.
r
1
D 1=3; a
2m
.1=3/ D
3m 4
3m C 2
a
2m2
.1=3/; y
1
D x
1=3
1
X
mD0
.1/
m
0
@
m
Y
j D1
3j 4
3j C 2
1
A
x
2m
.
r
2
D 1; a
2m
.1/ D
m 2
m
a
2m2
.1/; y
2
D x
1
.1 C x
2
/
7.5.44. p
0
.r/ D .r C 1/.2r 1/; p
1
.r/ D r
2
; a
2m
.r/ D
.2m C r 2/
2
.2m C r C 1/.4m C 2r 1/
a
2m2
.r/.
r
1
D 1=2; a
2m
.1=2/ D
.4m 3/
2
8m.4m C 3/
a
2m2
.1=2/; y
1
D x
1=2
1
X
mD0
.1/
m
8
m
0
@
m
Y
j D1
.4j 3/
2
4j C 3
1
A
x
2m
.
r
2
D 1; a
2m
.1/ D
.2m 3/
2
2m.4m 3/
a
2m2
.1/; y
2
D x
1
1
X
mD0
.1/
m
2
m
0
@
m
Y
j D1
.2j 3/
2
4j 3
1
A
x
2m
.
7.5.46. p
0
.r/ D .3r 1/.3r C 1/; p
1
.r/ D 3r C 5; a
2m
.r/ D
1
6m C 3r C 1
a
2m2
.r/.
r
1
D 1=3; a
2m
.1=3/ D
1
2.3m C 1/
a
2m2
.1=3/; y
1
D x
1=3
1
X
mD0
.1/
m
2
m
Q
m
j D1
.3j C 1/
x
2m
.
r
2
D 1=3; a
2m
.1=3/ D
1
6m
a
2m2
.1=3/; y
2
D x
1=3
1
X
mD0
.1/
m
6
m
x
2m
7.5.48. p
0
.r/ D 2.r C1/.4r 1/; p
2
.r/ D .r C3/
2
; a
2m
.r/ D
2m C r C 1
2.8m C 4r 1/
a
2m2
.r/.
r
1
D 1=4; a
2m
.1=4/ D
8m C 5
64m
a
2m2
.1=4/; y
1
D x
1=4
1
13
64
x
2
C
273
8192
x
4
2639
524288
x
6
C
.
r
2
D 1; a
2m
.1/ D
m
8m 5
a
2m2
.1/; y
2
D x
1
1
1
3
x
2
C
2
33
x
4
2
209
x
6
C
.
7.5.50. p
0
.r/ D .2r 1/.2r C 1/; p
2
.r/ D .2r C 5/
2
; a
2m
.r/ D
4m C 2r C 1
4m C2r 1
a
2m2
.r/.
Section 7.5
The Method of Frobeni us I
107
r
1
D 1=2; a
2m
.1=2/ D
2m C 1
2m
a
2m2
.1=2/; y
1
D x
1=2
1
3
2
x
2
C
15
8
x
4
35
16
x
6
C
.
r
2
D 1=2; a
2m
.1=2/ D
2m
2m 1
a
2m2
.1=2/; y
2
D x
1=2
1 2x
2
C
8
3
x
4
16
5
x
6
C
.
7.5.52. (a) Multiplying (A) c
1
y
1
Cc
2
y
2
0 by x
r
2
yields c
1
x
r
1
r
2
P
1
nD0
a
n
x
n
Cc
2
P
1
nD0
b
n
x
n
D 0,
0 < x < . Letting x ! 0C shows that c
2
D 0, since b
0
D 1. Now (A) reduces to c
1
y
1
0, so c
1
D 0.
Therefore,y
1
and y
2
are linearly independent on .0; /.
(b) Since y
1
D
P
1
nD0
a
n
.r
1
/x
n
and y
2
D
P
1
nD0
a
n
.r
2
/x
n
are linearly independent solutions of
Ly D 0 .0; /, fy
1
; y
2
g is a fundamental set of solutions of Ly D 0 on .0; /, by Theorem 5.1.6.
7.5.54. (a) If x > 0, then jxj
r
x
n
D x
nCr
, so the assertions are obvious. If x < 0, then jxj
r
D .x/
r
, so
d
dx
jxj
r
D r.x/
r1
D
r.x/
r
x
D
rjxj
r
x
. Therefore,(A)
d
dx
.jxj
r
x
n
/ D
rjxj
r
x
x
n
C jxj
r
.nx
n1
/ D
.n C r/jxj
r
x
n1
and
d
2
dx
2
.jxj
r
x
n
/ D .n C r/
d
dx
.jxj
r
x
n1
/ D .n C r /.n C r 1/jxj
r
x
n2
, from (A)
with n replaced by n 1.
7.5.56. (a) Here p
1
0, so Eqn. (7.5.12) reduces to a
0
.r/ D 1, a
1
.r/ D 0, a
n
.r/ D
p
2
.n C r 2/
p
0
.n C r /
a
n2
.r/,
r 0, which implies that a
2mC1
.r/ D 0 for m D 1; 2; 3; : : : . Therefore,Eqn. (7.5.12) actually reduces
to a
0
.r/ D 1, a
2m
.r/ D
p
2
.2m C r 2/
p
0
.2m C r/
, which ho lds because of condition (A).
(b) Similar to the proof of Exercise 7.5.55(a).
(c) p
0
.2m C r
1
/ D 2
0
.2m C r
1
r
2
/, which is nonzero if m > 0, since r
1
r
2
0. Therefore,
the assumptions of Theorem 7.5.2 hold with r D r
1
, and Ly
1
D p
0
.r
1
/x
r
1
D 0. If r
1
r
2
is no t an
even integer, then p
0
.2m C r
2
/ D 2
0
.2m r
1
C r
2
/ ¤ 0, m D 1; 2; . Hence, the assumptions
of Theorem 7.5.2 hold with r D r
2
and Ly
2
D p
0
.r
2
/x
r
2
D 0. From Exercise 7.5.52, fy
1
; y
2
g is a
fundamental set of solutions.
(d) Similar to the proof of Exercise 7.5.55(c).
7.5.58. (a) From Exercise 7.5.57, b
n
D 0 for n 1.
7.5.60. (a)
0
C˛
1
xC˛
2
x
2
/
1
X
nD0
a
n
x
n
D ˛
0
a
0
C
0
a
1
C˛
1
a
0
/xC
1
X
nD2
0
a
n
C˛
1
a
n1
C˛
2
a
n2
/x
n
D
1, so
1
X
nD0
a
n
x
n
D
˛
0
a
0
˛
0
C ˛
1
x C ˛
2
x
2
.
(b) If
p
1
.r 1/
p
0
.r/
D
˛
1
˛
0
and
p
2
.r 2/
p
0
.r/
D
˛
2
˛
0
, then Eqn. (7.5.12) is equivalent to a
0
.r/ D 1, ˛
0
a
1
.r/C
˛
1
a
0
.r/ D 0, ˛
0
a
n
.r/ C ˛
1
a
n1
.r/ C ˛
2
a
n2
.r/ D 0, n 2. Therefore,Theorem 7.5.2 implies the
conclusion.
7.5.62. p
0
.r/ D .2r 1/.3r 1/; p
1
.r/ D 0; p
2
.r/ D 2.2r C 3/.3r C 5/;
p
1
.r 1/
p
0
.r/
D 0 D
˛
1
˛
0
;
p
2
.r 2/
p
0
.r/
D 2 D
˛
2
˛
0
; y
1
D
x
1=3
1 C 2x
2
; y
2
D
x
1=2
1 C 2x
2
.
7.5.64. p
0
.r/ D 5.3r 1/.3r C 1/; p
1
.r/ D .3r C 2/.3r C 4/; p
2
.r/ D 0;
p
1
.r 1/
p
0
.r/
D
1
5
D
˛
1
˛
0
;
p
2
.r 2/
p
0
.r/
D 0 D
˛
2
˛
0
; y
1
D
x
1=3
5 C x
; y
2
D
x
1=3
5 C x
.
108 Chapter 7
Series Solutions of Linear Second Order Equations
7.5.66. p
0
.r/ D .2r 3/.2r 1/; p
1
.r/ D 3.2r 1/.2r C1/; p
2
.r/ D .2r C1/.2r C3/;
p
1
.r 1/
p
0
.r/
D
3 D
˛
1
˛
0
;
p
2
.r 2/
p
0
.r/
D 1 D
˛
2
˛
0
; y
1
D
x
1=2
1 C 3x C x
2
; y
2
D
x
3=2
1 C 3x C x
2
.
7.5.68. p
0
.r/ D 3.r 1/.4r 1/; p
1
.r/ D 2r.4r C3/; p
2
.r/ D .r C1/.4r C7/;
p
1
.r 1/
p
0
.r/
D
2
3
D
˛
1
˛
0
;
p
2
.r 2/
p
0
.r/
D
1
3
D
˛
2
˛
0
; y
1
D
x
3 C 2x C x
2
; y
2
D
x
1=4
3 C 2x C x
2
.
7.6 THE METHOD OF FROBENIUS II
7.6.2. p
0
.r/ D .r C 1/
2
; p
1
.r/ D .r C 2/.r C 3/; p
2
.r/ D .r C 3/.2r 1/;
a
1
.r/ D
r C 3
r C 2
; a
n
.r/ D
n C r C 2
n C r C 1
a
n1
.r/
2n C2r 5
n C r C 1
a
n2
.r/, n 2.
a
0
1
.r/ D
1
.r C 2/
2
; a
0
n
.r/ D
n C r C 2
n C r C 1
a
0
n1
.r/
2n C2r 5
n C r C 1
a
0
n2
.r/ C
1
.n C r C 1/
2
a
n1
.r/
7
.n C r C 1/
2
a
n2
.r/, n 2.
r
1
D 1; a
1
.1/ D 2; a
n
.1/ D
n C 1
n
a
n1
.1/
2n 7
n
a
n2
.1/, n 2;
y
1
D x
1
1 2x C
9
2
x
2
20
3
x
3
C
;
a
0
1
.1/ D 1; a
0
n
.1/ D
n C 1
n
a
n1
.1/
2n 7
n
a
n2
.1/ C
1
n
2
a
n1
.1/
7
n
2
a
n2
.1/, n 2;
y
2
D y
1
ln x C 1
15
4
x C
133
18
x
2
C .
7.6.4. p
0
.r/ D .2r 1/
2
; p
1
.r/ D .2r C 1/.2r C 3/; p
2
.r/ D .2r C 1/.2r C 3/;
a
1
.r/ D
2r C 3
2r C 1
; a
n
.r/ D
.2n C 2r C 1/a
n1
.r/ .2n C 2r 3/a
n2
.r/
2n C2r 1
, n 2.
a
0
1
.r/ D
4
.2r C 1/
2
; a
0
n
.r/ D
.2n C 2r C1/a
0
n1
.r/ .2n C 2r 3/a
0
n2
.r/
2n C 2r 1
C
4.a
n1
.r/ a
n2
.r//
.2n C 2r 1/
2
;
n 2.
r
1
D 1=2; a
1
.1=2/ D 2; a
n
.1=2/ D
.n C 1/a
n1
.1=2/ C .n 1/a
n2
.1=2/
n
; n 2;
y
1
D x
1=2
1 2x C
5
2
x
2
2x
3
C
;
a
0
1
.1=2/ D 1; a
0
n
.1=2/ D
.n C 1/a
0
n1
.1=2/ C .n 1/a
0
n2
.1=2/
n
C
a
n1
.1=2/ a
n2
.1=2/
n
2
, n
2;
y
2
D y
1
ln x C x
3=2
1
9
4
x C
17
6
x
2
C
.
7.6.6. p
0
.r/ D .3r C 1/
2
; p
1
.r/ D 3.3r C 4/; p
2
.r/ D 2.3r C 7/;
a
1
.r/ D
3
3r C 4
; a
n
.r/ D
3a
n1
.r/ C 2a
n2
.r/
3n C 3r C 1
; n 2;
a
0
1
.r/ D
9
.3r C 4/
2
; a
0
n
.r/ D
3a
0
n1
.r/ C 2a
0
n2
.r/
3n C 3r C 1
C
9a
n1
.r/ 6a
n2
.r/
.3n C 3r C 1/
2
; n 2.
r
1
D 1=3; a
1
.1=3/ D 1; a
n
.1=3/ D
3a
n1
.1=3/ C 2a
n2
.1=3/
3n
, n 2;
y
1
D x
1=3
1 x C
5
6
x
2
1
2
x
3
C
;
Section 7.6
The Method of Frobeni us II
109
a
0
1
.1=3/ D 1; a
0
n
.1=3/ D
3a
0
n1
.r/ C 2a
0
n2
.r/
3n
C
3a
n1
.r/ 2a
n2
.r/
3n
2
; n 2;
y
2
D y
1
ln x C x
2=3
1
11
12
x C
25
36
x
2
C
.
7.6.8. p
0
.r/ D .r C 2/
2
; p
1
.r/ D 2.r C3/
2
; p
2
.r/ D 3.r C 4/;
a
1
.r/ D 2; a
n
.r/ D 2a
n1
.r/
3a
n2
.r/
n C r C 2
; n 2;
a
0
1
.r/ D 0; a
0
n
.r/ D 2a
0
n1
.r/
3a
0
n2
.r/
n C r C 2
C
3a
n2
.r/
.n C r C 2/
2
, n 2.
r
1
D 2; a
1
.2/ D 2; a
n
.2/ D 2a
n1
.2/
3a
n2
.2/
n
, n 2;
y
1
D x
2
1 2x C
5
2
x
2
3x
3
C
;
a
0
1
.2/ D 0; a
0
n
.2/ D 2a
n1
.2/
3a
n2
.2/
n
C
3a
n2
.2/
n
2
; n 2;
y
2
D y
1
ln x C
3
4
13
6
x C .
7.6.10. p
0
.r/ D .4r C1/
2
; p
1
.r/ D 4r C 5; p
2
.r/ D 2.4r C 9/;
a
1
.r/ D
1
4r C 5
; a
n
.r/ D
a
n1
.r/ C 2a
n2
.r/
4n C 4r C 1
; n 2;
a
0
1
.r/ D
4
.4r C 5/
2
; a
0
n
.r/ D
a
0
n1
.r/ C 2a
0
n2
.r/
4n C 4r C 1
C
4a
n1
.r/ C 8a
n2
.r/
.4n C 4r C 1/
2
; n 2.
r
1
D 1=4; a
1
.1=4/ D 1=4; a
n
.1=4/ D
a
n1
.1=4/ C 2a
n2
.1=4/
4n
; n 2;
y
1
D x
1=4
1
1
4
x
7
32
x
2
C
23
384
x
3
C
;
a
0
1
.1=4/ D 1=4; a
0
n
.1=4/ D
a
0
n1
.1=4/ C 2a
0
n2
.1=4/
4n
C
a
n1
.1=4/ C 2a
n2
.1=4/
4n
2
; n
2;
y
2
D y
1
ln x C x
3=4
1
4
C
5
64
x
157
2304
x
2
C
.
7.6.12. p
0
.r/ D .2r 1/
2
; p
1
.r/ D 4;
a
n
.r/ D
4
.2n C 2r 1/
2
a
n1
.r/;
a
n
.r/ D
.4/
n
Q
n
j D1
.2j C 2r 1/
.
By logarithmic differentiation, a
0
n
.r/ D a
n
.r/
n
X
j D1
2
2j C 2r 1
;
r
1
D 1=2; a
n
.1=2/ D
.1/
n
.nŠ/
2
;
a
0
n
.1=2/ D a
n
.1=2/
0
@
2
n
X
j D1
1
j
1
A
;
y
1
D x
1=2
1
X
nD0
.1/
n
.nŠ/
2
x
n
;
110 Chapter 7
Series Solutions of Linear Second Order Equations
y
2
D y
1
ln x 2x
1=2
1
X
nD1
.1/
n
.nŠ/
2
0
@
n
X
j D1
1
j
1
A
x
n
;
7.6.14. p
0
.r/ D .r 2/
2
; p
1
.r/ D r
2
; a
n
.r/ D
.n C r 1/
2
.n C r 2/
2
a
n1
.r/; a
n
.r/ D .1/
n
.n C r 1/
2
.r 1/
2
;
a
0
n
.r/ D .1/
nC1
2n.r C n 1/
.r 1/
3
; r
1
D 2; a
n
.2/ D .1/
n
.n C 1/
2
; a
0
n
.2/ D .1/
nC1
2n.n C 1/;
y
1
D x
2
1
X
nD0
.1/
n
.n C 1/
2
x
n
; y
2
D y
1
ln x 2x
2
1
X
nD1
.1/
n
n.n C 1/x
n
.
7.6.16. p
0
.r/ D .5r 1/
2
; p
1
.r/ D r C 1;
a
n
.r/ D
.n C r /
.5n C 5r 1/
2
a
n1
.r/;
a
n
.r/ D .1/
n
n
Y
j D1
.j C r/
.5j C 5r 1/
2
;
By logarithmic differentiation,
a
0
n
.r/ D a
n
.r/
n
X
j D1
.5j C 5r C 1/
.j C r/.5j C 5r 1/
;
r
1
D 1=5; a
n
.1=5/ D .1/
n
n
Y
j D1
.5j C 1/
125
n
.nŠ/
2
;
a
0
n
.1=5/ D a
n
.1=5/
n
X
j D1
5j C 2
j.5j C 1/
;
y
1
D x
1=5
1
X
nD0
.1/
n
Q
n
j D1
.5j C 1/
125
n
.nŠ/
2
x
n
;
y
2
D y
1
ln x x
1=5
1
X
nD1
.1/
n
Q
n
j D1
.5j C 1/
125
n
.nŠ/
2
0
@
n
X
j D1
5j C 2
j.5j C 1/
1
A
x
n
.
7.6.18. p
0
.r/ D .3r 1/
2
; p
1
.r/ D .2r 1/
2
;
a
n
.r/ D
.2n C 2r 3/
2
.3n C 3r 1/
2
a
n1
.r/;
a
n
.r/ D .1/
n
n
Y
j D1
.2j C 2r 3/
2
.3j C 3r 1/
2
;
By logarithmic differentiation,
a
0
n
.r/ D 14a
n
.r/
n
X
j D1
1
.2j C 2r 3/.3j C 3r 1/
;
r
1
D 1=3; a
n
.1=3/ D
.1/
n
Q
n
j D1
.6j 7/
2
81
n
.nŠ/
2
;
a
0
n
.1=3/ D 14a
n
.1=3/
n
X
j D1
1
j.6j 7/
/;
y
1
D x
1=3
1
X
nD0
.1/
n
Q
n
j D1
.6j 7/
2
81
n
.nŠ/
2
x
n
;
Section 7.6
The Method of Frobeni us II
111
y
2
D y
1
ln x C 14x
1=3
1
X
nD1
.1/
n
Q
n
j D1
.6j 7/
2
81
n
.nŠ/
2
0
@
n
X
j D1
1
j.6j 7/
/
1
A
x
n
.
7.6.20. p
0
.r/ D .r C 1/
2
; p
1
.r/ D 2.r C 2/.2r C 3/;
a
n
.r/ D
2.2n C 2r C 1/
n C r C 1
a
n1
.r/, n 1; a
n
.r/ D 2
n
n
Y
j D1
2j C 2r C 1
j C r C 1
;
By logarithmic differentiation,
a
0
n
.r/ D a
n
.r/
n
X
j D1
1
.j C r C 1/.2j C 2r C 1/
;
r
1
D 1; a
n
.1/ D
2
n
Q
n
j D1
.2j 1/
;
a
0
n
.1/ D a
n
.1/
n
X
j D1
1
j.2j 1/
;
y
1
D
1
x
1
X
nD0
2
n
Q
n
j D1
.2j 1/
x
n
;
y
2
D y
1
ln x C
1
x
1
X
nD1
2
n
Q
n
j D1
.2j 1/
0
@
n
X
j D1
1
j.2j 1/
1
A
x
n
.
7.6.22. p
0
.r/ D 2.r 2/
2
; p
1
.r/ D .r 1/.2r C 1/;
a
n
.r/ D
2n C 2r 1
2.n C r 2/
a
n1
.r/;
a
n
.r/ D
.1/
n
2
n
n
Y
j D1
2j C 2r 1
j C r 2
;
By logarithmic differentiation,
a
0
n
.r/ D 3a
n
.r/
n
X
j D1
1
.j C r 2/.2j C 2r 1/
;
r
1
D 2; a
n
.2/ D
.1/
n
Q
n
j D1
.2j C 3/
2
n
;
a
0
n
.2/ D 3a
n
.2/
n
X
j D1
1
j.2j C 3/
;
y
1
D x
2
1
X
nD0
.1/
n
Q
n
j D1
.2j C 3/
2
n
x
n
;
y
2
D y
1
ln x 3x
2
1
X
nD0
.1/
n
Q
n
j D1
.2j C 3/
2
n
0
@
n
X
j D1
1
j.2j C 3/
1
A
x
n
.
7.6.24. p
0
.r/ D .r 3/
2
; p
1
.r/ D 2.r 1/.r C 2/;
a
n
.r/ D
2.n C r 2/.n C r C 1/
.n C r 3/
2
a
n1
.r/;
a
0
n
.r/ D
2.n C r 2/.n C r C 1/
.n C r 3/
2
a
0
n1
.r/
2.5n C 5r 7/
.n C r 3/
3
a
n1
.r/;
r
1
D 3; a
n
.3/ D
2.n C 1/.n C 4/
n
2
a
n1
.3/;
112 Chapter 7
Series Solutions of Linear Second Order Equations
y
1
D x
3
.1 C 20x C 180x
2
C 1120x
3
C ;
a
0
n
.3/ D
2.n C 1/.n C 4/
n
2
a
0
n1
.3/
2.5n C8/
n
3
a
n1
.3/;
y
2
D y
1
ln x x
4
26 C 324x C
6968
3
x
2
C
7.6.26. p
0
.r/ D r
2
; p
1
.r/ D r
2
C r C 1;
a
n
.r/ D
.n
2
C n.2r 1/ C r
2
r C 1/
.n C r /
2
a
n1
.r/;
a
0
n
.r/ D
.n
2
C n.2r 1/ C r
2
r C 1/
.n C r /
2
a
0
n1
.r/
.n C r 2/
.n C r /
3
a
n1
.r/;
r
1
D 0; a
n
.0/ D
.n
2
n C 1/
n
2
a
n1
.0/;
y
1
D 1 x C
3
4
x
2
7
12
x
3
C ;
a
0
n
.0/ D
.n
2
n C 1/
n
2
a
0
n1
.0/
.n 2/
n
3
a
n1
.0/;
y
2
D y
1
ln x C x
1
3
4
x C
5
9
x
2
C
.
7.6.28. p
0
.r/ D .r 1/
2
; p
2
.r/ D r C 1;
a
2m
.r/ D
1
2m C r 1
a
2m2
.r/, n 1; a
2m
.r/ D
.1/
m
Q
m
j D1
.2j C r 1/
;
By logarithmic differentiation,
a
0
2m
.r/ D a
2m
.r/
m
X
j D1
;
r
1
D 1; a
2m
.1/ D
.1/
m
2
m
;
a
0
2m
.1/ D
1
2
a
2m
.1/
m
X
j D1
1
j
;
y
1
D x
1
X
mD0
.1/
m
2
m
x
2m
;
y
2
D y
1
ln x
x
2
1
X
mD1
.1/
m
2
m
0
@
m
X
j D1
1
j
1
A
x
2m
.
7.6.30. p
0
.r/ D .2r 1/
2
; p
2
.r/ D 2r C 3;
a
2m
.r/ D
1
4m C 2r 1
a
2m2
.r/;
a
2m
.r/ D
.1/
m
Q
m
j D1
.4j C 2r 1/
;
By logarithmic differentiation,
a
0
2m
.r/ D 2a
2m
.r/
m
X
j D1
1
4j C 2r 1
;
r
1
D 1=2; a
2m
.1=2/ D
.1/
m
4
m
;
Section 7.6
The Method of Frobeni us II
113
a
0
2m
.1=2/ D
1
2
a
2m
.1=2/
m
X
j D1
1
j
;
y
1
D x
1=2
1
X
mD0
.1/
m
4
m
x
2m
;
y
2
D y
1
ln x
x
1=2
2
1
X
mD1
.1/
m
4
m
0
@
m
X
j D1
1
j
1
A
x
2m
.
7.6.32. p
0
.r/ D .2r 1/
2
; p
2
.r/ D .r C 1/.2r C 3/; a
2m
.r/ D
2m C r 1
4m C 2r 1
a
2m2
.r/;
a
2m
.r/ D .1/
m
m
Y
j D1
2j C r 1
4j C 2r 1
;
By logarithmic differentiation,
a
0
2m
.r/ D a
2m
.r/
m
X
j D1
1
.2j C r 1/.4j C 2r 1/
;
r
1
D 1=2; a
2m
.1=2/ D
.1/
m
Q
m
j D1
.4j 1/
8
m
;
a
0
2m
.1=2/ D a
2m
.1=2/
m
X
j D1
1
2j.4j 1/
;
y
1
D x
1=2
1
X
mD0
.1/
m
Q
m
j D1
.4j 1/
8
m
x
2m
;
y
2
D y
1
ln x C
x
1=2
2
1
X
mD1
.1/
m
Q
m
j D1
.4j 1/
8
m
0
@
m
X
j D1
1
j.4j 1/
1
A
x
2m
.
7.6.34. p
0
.r/ D .4r C1/
2
; p
2
.r/ D .r 1/.4r C 9/;
a
2m
.r/ D
2m C r 3
8m C 4r C 1
a
2m2
.r/;
a
2m
.r/ D .1/
m
m
Y
j D1
2j C r 3
8j C 4r C 1
;
By logarithmic differentiation,
a
0
2m
.r/ D a
2m
.r/
m
X
j D1
13
.2j C r 3/.8j C 4r C 1/
;
r
1
D 1=4; a
2m
.1=4/ D
.1/
m
Q
m
j D1
.8j 13/
.32/
m
;
a
0
2m
.1=4/ D a
2m
.1=4/
m
X
j D1
13
2j.8j 13/
;
y
1
D x
1=4
1
X
mD0
.1/
m
Q
m
j D1
.8j 13/
.32/
m
x
2m
;
y
2
D y
1
ln x C
13
2
x
1=4
1
X
mD1
.1/
m
Q
m
j D1
.8j 13/
.32/
m
0
@
m
X
j D1
1
j.8j 13/
1
A
x
2m
.
7.6.36. p
0
.r/ D .2r 1/
2
; p
2
.r/ D 16r.r C 1/;
114 Chapter 7
Series Solutions of Linear Second Order Equations
a
2m
.r/ D
16.2m C r 2/.2m C r 1/
.4m C 2r 1/
2
a
2m2
.r/;
a
2m
.r/ D .16/
m
m
Y
j D1
.2j C r 2/.2j C r 1/
.4j C 2r 1/
2
;
By logarithmic differentiation,
a
0
2m
.r/ D a
2m
.r/
m
X
j D1
8j C 4r 5
.2j C r 2/.2j C r 1/.4j C 2r 1/
;
r
1
D 1=2; a
2m
.1=2/ D
.1/
m
Q
m
j D1
.4j 3/.4j 1/
4
m
.mŠ/
2
;
a
0
2m
.1=2/ D a
2m
.1=2/
m
X
j D1
8j 3
j.4j 3/.4j 1/
;
y
1
D x
1=2
1
X
mD0
.1/
m
Q
m
j D1
.4j 3/.4j 1/
4
m
.mŠ/
2
x
2m
;
y
2
D y
1
ln x C x
1=2
1
X
mD1
.1/
m
Q
m
j D1
.4j 3/.4j 1/
4
m
.mŠ/
2
0
@
m
X
j D1
8j 3
j.4j 3/.4j 1/
1
A
x
2m
.
7.6.38. p
0
.r/ D .r C 1/
2
; p
2
.r/ D .r C 3/.2r 1/;
a
2m
.r/ D
4m C 2r 5
2m C r C 1
a
2m2
.r/;
a
2m
.r/ D .1/
m
m
Y
j D1
4j C 2r 5
2j C r C 1
;
By logarithmic differentiation,
a
0
2m
.r/ D a
2m
.r/
m
X
j D1
7
.2j C r C 1/.4j C 2r 5/
;
r
1
D 1; a
2m
.1/ D
.1/
m
Q
m
j D1
.4j 7/
2
m
;
a
0
2m
.1/ D a
2m
.1/
m
X
j D1
7
2j.4j 7/
;
y
1
D
1
x
1
X
mD0
.1/
m
Q
m
j D1
.4j 7/
2
m
x
2m
;
y
2
D y
1
ln x C
7
2x
1
X
mD1
.1/
m
Q
m
j D1
.4j 7/
2
m
0
@
m
X
j D1
1
j.4j 7/
1
A
x
2m
.
7.6.40. p
0
.r/ D .r 1/
2
; p
2
.r/ D r C 1;
a
2m
.r/ D
1
2m C r 1
a
2m2
.r/;
a
0
2m
.r/ D
1
2m C r 1
a
0
2m2
.r/ C
1
.2m C r 1/
2
a
2m2
.r/;
r
1
D 1; a
2m
.1/ D
1
2m
a
2m2
.1/;
y
1
D x
1
1
2
x
2
C
1
8
x
4
1
48
x
6
C
;
Section 7.6
The Method of Frobeni us II
115
a
0
2m
.1/ D
1
2m
a
0
2m2
.1/ C
1
4m
2
a
2m2
.1/, m 1;
y
2
D y
1
ln x C x
3
1
4
3
32
x
2
C
11
576
x
4
C
.
7.6.42. p
0
.r/ D 2.r C3/
2
; p
2
.r/ D r
2
2r C2;
a
2m
.r/ D
4m
2
C 4m.r 3/ C r
2
6r C 10
2.2m C r C 3/
2
a
2m2
.r/;
a
0
2m
.r/ D
4m
2
C 4m.r 3/ C r
2
6r C 10
2.2m C r C 3/
2
a
0
2m2
.r/
12m C6r 19
.2m C r C 3/
3
a
2m2
.r/;
r
1
D 3; a
2m
.3/ D
4m
2
24m C37
8m
2
a
2m2
.3/;
y
1
D x
3
1
17
8
x
2
C
85
256
x
4
85
18432
x
6
C
;
a
0
2m
.3/ D
4m
2
24m C 37
8m
2
a
0
2m2
.3/ C
37 12m
8m
3
a
2m2
.3/, m 1;
y
2
D y
1
ln x C x
1
25
8
471
512
x
2
C
1583
110592
x
4
C
.
7.6.44. p
0
.r/ D .r C 1/
2
; p
1
.r/ D 2.2 r/.r C 1/; r
1
D 1.
a
n
.r/ D
2.n C r/.n C r 3/
.n C r C 1/
2
a
n1
.r/; a
n
.r/ D 2
n
n
Y
j D1
.j C r/.j C r 3/
.j C r C 1/
2
, n 0. Therefore,a
n
.1/ D
0 if n 1 and y
1
D 1=x. If n 4, then a
n
.r/ D .rC1/
2
b
n
.r/, where b
0
n
.1/ exists; therefore a
0
n
.1/ D
0 if n 4. For r D 1; 2; 3, a
n
.r/ D .r C 1/c
n
.r/, where c
1
.r/ D
2.r 2/
.r C 2/
2
, c
2
.r/ D
4.r 2/.r 1/
.r C 2/.r C 3/
2
,
c
3
.r/ D
8r.r 2/.r 1/
.r C 2/.r C 3/.r C 4/
2
. Hence, a
0
1
.1/ D c
1
.1/ D 6, a
0
2
.1/ D c
2
.1/ D 6, a
0
3
.1/ D
c
3
.1/ D 8=3, and y
2
D y
1
ln x 6 C 6x
8
3
x
2
.
7.6.46. p
0
.r/ D .r C 1/
2
; p
1
.r/ D .r 1/.r C 2/; r
1
D 1.
a
n
.r/ D
n C r 2
n C r C 1
a
n1
.r/; a
n
.r/ D
m
Y
j D1
j C r 2
j C r C 1
, n 0. Therefore,a
1
.1/ D 2, a
2
.1/ D 1,
and a
n
.1/ D 0 if n 3, so y
1
D
.x 1/
2
x
.
a
1
.r/ D
r 1
r C 2
, a
0
1
.r/ D
3
.r C 2/
2
, a
0
1
.1/ D 3; a
2
.r/ D
r.r 1/
.r C 2/.r C 3/
, a
0
2
.r/ D
6.r
2
C 2r 1/
.r C 2/
2
.r C 3/
2
,
a
0
2
.1/ D 3; if n 3 a
n
.r/ D .r C 1/c
n
.r/ where c
n
.r/ D
r.r 1/
.n C r /.n C r 1/.n C r C 1/
, so
a
0
n
.1/ D c
n
.1/ D
2
n.n 2/.n 1/
and y
2
D y
1
ln x C 3 3x C 2
1
X
nD2
1
n.n
2
1/
x
n
.
7.6.48. p
0
.r/ D .r 2/
2
; p
1
.r/ D .r 5/.r 1/; r
1
D 2.
a
n
.r/ D
n C r 6
n C r 2
a
n1
.r/;
a
n
.r/ D
m
Y
j D1
j C r 6
j C r 2
, n 0. Therefore,a
1
.2/ D 3, a
2
.2/ D 3, a
3
.2/ D 1, and a
n
.2/ D 0 if
n 4, so y
1
D x
2
.1 x/
3
.
116 Chapter 7
Series Solutions of Linear Second Order Equations
a
1
.r/ D
r 5
r 1
, a
0
1
.r/ D
4
.r 1/
2
, a
0
1
.2/ D 4;
a
2
.r/ D
.r 5/.r 4/
r.r 1/
, a
0
2
.r/ D
4.2r
2
10r C 5/
r
2
.r 1/
2
, a
0
2
.2/ D 7;
a
3
.r/ D
.r 5/.r 4/.r 3/
r.r 1/.r C 1/
, a
0
3
.r/ D
12.r
4
8r
3
C 16r
2
5/
r
2
.r 1/
2
.r C 1/
2
, a
0
3
.2/ D 11=3; if n 4, then
a
n
.r/ D .r 2/c
n
.r/ where c
n
.r/ D
.r 5/.r 4/.r 3/
.n C r 5/.n C r 4/.n C r 3/.n C r 2/
, so a
0
n
.2/ D
c
n
.2/ D
6
n.n 2/.n
2
1/
and
y
2
D y
1
ln x C x
3
4 7x C
11
3
x
2
6
1
X
nD3
1
n.n 2/.n
2
1/
x
n
!
.
7.6.50. p
0
.r/ D .3r 1/
2
; p
2
.r/ D 7 3r ; r
1
D 1=3.
a
2m
.r/ D
6m C 3r 13
.6m C 3r 1/
2
a
2m2
.r/;
a
2m
.r/ D
m
Y
j D1
6j C 3r 13
.6j C 3r 1/
2
, m 0. Therefore,a
2
.1=3/ D 1=6 and a
2m
.1=3/ D 0 if m 2, so
y
1
D x
1=3
1
1
6
x
2
.
a
2
.r/ D
3r 7
.3r C 5/
2
; a
0
2
.r/ D
3.19 3r /
.3r C 5/
3
; a
0
2
.1=3/ D 1=4. If m 2, then a
2m
.r/ D .r 1=3/c
2m
.r/
where c
2m
.r/ D
3.3r 7/
.6m C 3r 7/.6m C 3r 1/
Q
m
j D1
.6j C 3r 1/
, so a
0
2m
.1=3/ D c
2m
.1=3/ D
1
12
1
6
m1
.m 1/m
, and
y
2
D y
1
ln x C x
7=3
1
4
1
12
1
X
mD1
1
6
m
m.m C 1/.m C 1/Š
x
2m
!
.
7.6.52. p
0
.r/ D .2r C1/
2
; p
2
.r/ D 7 2r; r
1
D 1=2.
a
2m
.r/ D
4m C 2r 11
.4m C 2r C 1/
2
a
2m2
.r/;
a
2m
.r/ D
m
Y
j D1
4j C 2r 11
.4j C 2r C 1/
2
, m 0. Therefore,a
2
.1=2/ D 1=2, a
4
.1=2/ D 1=32, and
a
2m
.1=2/ D 0 if m 3, so y
1
D x
1=2
1
1
2
x
2
C
1
32
x
4
.
a
2
.r/ D
2r 7
.2r C 5/
2
, a
0
2
.r/ D
2.19 2r /
.2r C 5/
3
, a
0
2
.1=2/ D 5=8,
a
4
.r/ D
.2r 7/.2r 3/
.2r C 5/
2
.2r C 9/
2
, a
0
4
.r/ D
4.8r
3
60r
2
146r C 519/
.2r C 5/
3
.2r C 9/
3
, a
0
4
.1=2/ D 9=128; if
m 3, then a
2m
.r/ D .r C 1=2/c
2m
.r/ where
c
2m
.r/ D
2.2r 7/.2r 3/
.4m C 2r 7/.4m C 2r 3/.4m C 2r C 1/
Q
m
j D1
.4j C 2r C 1/
, so a
0
2m
.1=2/ D c
2m
.1=2/ D
1
4
m
.m 2/.m 1/m
, and
Section 7.6
The Method of Frobeni us II
117
y
2
D y
1
ln x C x
3=2
5
8
9
128
x
2
C
1
X
mD2
1
4
mC1
.m 1/m.m C 1/.m C 1/Š
x
2m
!
.
7.6.54. (a) If p
0
.r/ D ˛
0
.r r
1
/
2
, then (A) a
n
.r/ D
.1/
n
˛
n
0
n
Y
j D1
p
1
.j C r 1/
.j C r r
1
/
2
. Therefore, a
n
.r
1
/ D
.1/
n
˛
n
0
.nŠ/
2
n
Y
j D1
p
1
.j C r
1
1/. Theorem 7.6.2 implies Ly
1
D 0.
(b) From (A), ln ja
n
.r/j D n ln j˛
0
j C
n
X
j D1
.ln jp
1
.j C r 1/j 2 ln jj C r r
1
j/, so a
0
n
.r/ D
a
n
.r/
n
X
j D1
p
0
1
.j C r 1/
p
1
.j C r 1/
2
j C r r
1
and a
0
n
.r
1
/ D a
n
.r
1
/
n
X
j D1
p
0
1
.j C r
1
1/
p
1
.j C r
1
1/
2
j
. Theo-
rem 7.6.2 implies that Ly
2
D 0.
(c) Since p
1
.r/ D
1
, y
1
and y
2
reduce to the stated forms. If
1
D 0, then y
1
D x
r
1
and y
2
D
x
r
1
ln x, wh ich are solutions of the Euler equation ˛
0
x
2
y
00
C ˇ
0
xy
0
C
0
y.
7.6.54. (a) Ly
1
D p
0
.r
1
/x
r
1
D 0. Now use t he fact that p
0
.j C r
1
/ D ˛
0
j
2
, so
Q
n
j D1
p
0
.j C r
1
/ D
˛
n
0
.nŠ/
2
.
(b) From Theorem 7.6.2, y
2
D y
1
ln x C x
r
1
1
X
nD1
a
0
n
.r
1
/x
n
is a second solution of Ly D 0. Since
a
n
.r/ D
.1/
n
˛
n
0
n
Y
j D1
p
1
.j C r 1/
.j C r r
1
/
2
, (A) ln ja
n
.r/j D n ln j˛
0
jC
n
X
j D1
ln jp
1
.j Cr 1/j2
n
X
j D1
ln jj C
r r
1
j, provided that p
1
.j Cr 1/ and j Cr r
1
are nonzero for all positive integers j . Differentiating (A)
and then setting r D r
1
yields
a
0
n
.r
1
/
a
n
.r
1
/
D
n
X
j D1
p
0
1
.j C r
1
1/
p
2
.j C r
1
1/
2
n
X
j D1
1
j
, which impli es the conclusion.
(c) In this case p
1
.r/ D
1
and p
0
1
.r/ D 0, so a
n
.r
1
/ D
.1/
n
.nŠ/
2
1
˛
0
n
and J
n
D 2
n
X
j D1
1
j
. If
1
D 0, then y
1
D x
r
1
and y
2
D x
r
1
ln x, wh ile the differential equation is an Euler equation with
indicial polynomial ˛
0
.r r
2
1
/. See Theorem 7.4.3.
7.6.56. p
0
.r/ D r
2
; p
1
.r/ D 1; r
1
D 0. a
2m
.r/ D
a
2m1
.r/
.2m C r/
2
, m 1; a
2m
.r/ D
.1/
m
Q
m
j D1
.2j C r/
2
,
m 0. Therefore,a
2m
.0/ D
.1/
m
4
m
.mŠ/
2
, so y
1
D
1
X
mD0
.1/
m
4
m
.mŠ/
2
x
2m
.
By logarithmic differentiation, a
0
2m
.r/ D 2a
2m
.r/
m
X
j D1
1
2m C r
, so a
0
2m
.0/ D a
2m
.0/
m
X
j D1
1
j
and
y
2
D y
1
ln x
1
X
mD1
.1/
m
4
m
.mŠ/
2
0
@
m
X
j D1
1
j
1
A
x
2m
.
7.6.58. p
0
.r/ D .2r 1/
2
; p
1
.r/ D .2r C1/
2
; p
2
.r/ D 0;
p
1
.r 1/
p
0
.r/
D 1 D
˛
1
˛
0
;
p
2
.r 2/
p
0
.r/
D 0 D
˛
2
˛
0
;
y
1
D
x
1=2
1 C x
; y
2
D
x
1=2
ln x
1 C x
.
118 Chapter 7
Series Solutions of Linear Second Order Equations
7.6.60. p
0
.r/ D 2.r 1/
2
; p
1
.r/ D 0; p
2
.r/ D .r C 1/
2
;
p
1
.r 1/
p
0
.r/
D 0 D
˛
1
˛
0
;
p
2
.r 2/
p
0
.r/
D
1=2 D
˛
2
˛
0
; y
1
D
x
2 x
2
; y
2
D
x ln x
2 x
2
.
7.6.62. p
0
.r/ D 4.r 1/
2
; p
1
.r/ D 3r
2
; p
2
.r/ D 0;
p
1
.r 1/
p
0
.r/
D 3=4 D
˛
1
˛
0
;
p
2
.r 2/
p
0
.r/
D 0 D
˛
2
˛
0
;
y
1
D
x
4 C 3x
; y
2
D
x ln x
4 C 3x
.
7.6.64. p
0
.r/ D .r 1/
2
; p
1
.r/ D 2r
2
; p
2
.r/ D .r C1/
2
;
p
1
.r 1/
p
0
.r/
D 2 D
˛
1
˛
0
;
p
2
.r 2/
p
0
.r/
D 1 D
˛
2
˛
0
; y
1
D
x
.1 x/
2
; y
2
D
x ln x
.1 x/
2
.
7.6.66. See the proofs of Theorems 7.6.1 and 7.6.2.
7.7 THE METHOD OF FROBENIUS III
7.7.2. p
0
.r/ D r.r 1/; p
1
.r/ D 1; r
1
D 1; r
2
D 0; k D r
1
r
2
D 1;
a
n
.r/ D
1
.n C r /.n C r 1/
a
n1
.r/;
a
n
.r/ D
.1/
n
Q
n
j D1
.j C r/.j C r 1/
;
a
n
.1/ D
.1/
n
nŠ.n C 1/Š
;
y
1
D x
1
X
nD0
.1/
n
nŠ.n C 1/Š
x
n
;
´ D 1; C D p
1
.0/a
0
.0/ D 1.
By logarithmic differentiation,
a
0
n
.r/ D a
n
.r/
n
X
j D1
2n C 2r 1
.n C r /.n C r 1/
;
a
0
n
.1/ D a
n
.1/
n
X
j D1
2j C 1
j.j C 1/
;
y
2
D 1 y
1
ln x C x
1
X
nD1
.1/
n
nŠ.n C 1/Š
0
@
n
X
j D1
2j C 1
j.j C 1/
1
A
x
n
.
7.7.4. p
0
.r/ D r.r 1/; p
1
.r/ D r C1; r
1
D 1; r
2
D 0; k D r
1
r
2
D 1; a
n
.r/ D
a
n1
.r/
n C r 1
; a
n
.r/ D
.1/
n
Q
n
j D1
.j C r 1/
; a
n
.1/ D
.1/
n
; y
1
D x
1
X
nD0
.1/
n
x
n
D xe
x
; ´ D 1; C D p
1
.0/a
0
.0/ D 1.
By logarithmic differentiati on, a
0
n
.r/ D a
n
.r/
n
X
j D1
1
j C r 1
; a
0
n
.1/ D a
n
.1/
n
X
j D1
1
j
; y
2
D 1 y
1
ln x C x
1
X
nD1
.1/
n
0
@
n
X
j D1
1
j
1
A
7.7.6. p
0
.r/ D .r 1/.r C 2/; p
1
.r/ D r C 3; r
1
D 1; r
2
D 2; k D r
1
r
2
D 3. a
n
.r/ D
1
n C r 1
a
n1
.r/; a
n
.r/ D
.1/
n
Q
n
j D1
.j C r 1/
; a
n
.1/ D
.1/
n
; y
1
D x
1
X
nD0
.1/
n
x
n
D xe
x
;
Section 7.7
The Method of Frobenius III
119
´ D x
2
1 C
1
2
x C
1
2
x
2
; C D
p
1
.0/
3
a
2
.2/ D 1=2. By logarithmic differentiation, a
0
n
.r/ D
a
n
.r/
n
X
j D1
1
j C r 1
; a
0
n
.1/ D a
n
.1/
n
X
j D1
1
j
; y
2
D x
2
1 C
1
2
x C
1
2
x
2
1
2
0
@
y
1
ln x x
1
X
nD1
.1/
n
0
@
n
X
j D1
1
j
1
A
x
n
1
A
;
7.7.8. p
0
.r/ D .r C 2/.r C 7/; p
1
.r/ D 1; r
1
D 2; r
2
D 7; k D r
1
r
2
D 5; a
n
.r/ D
a
n1
.r/
.n C r C 2/.n C r C 7/
; a
n
.r/ D
.1/
n
Q
n
j D1
.j C r C2/.j C r C 7/
; a
n
.2/ D 120
n
Y
j D1
.1/
n
nŠ.n C 5/Š
;
y
1
D
120
x
2
1
X
nD0
.1/
n
nŠ.n C 5/Š
x
n
;
´ D x
7
1 C
1
4
x C
1
24
x
2
C
1
144
x
3
C
1
576
x
4
; C D
p
1
.3/
5
a
4
.7/ D 1=2880. By logarith-
mic differentiation, a
0
n
.r/ D a
n
.r/
n
X
j D1
2j C 2r C 9
.j C r C 2/.j C r C 7/
; a
0
n
.2/ D a
n
.2/
n
X
j D1
2j C 5
j.j C 5/
;
y
2
D x
7
1 C
1
4
x C
1
24
x
2
C
1
144
x
3
C
1
576
x
4
1
2880
0
@
y
1
ln x
120
x
2
1
X
nD1
.1/
n
nŠ.n C 5/Š
0
@
n
X
j D1
2j C 5
j.j C 5/
1
A
x
n
1
A
.
7.7.10. p
0
.r/ D r.r 4/; p
1
.r/ D .r 6/.r 5/; r
1
D 4; r
2
D 0; k D r
1
r
2
D 4; a
n
.r/ D
.n C r 7/.n Cr 6/
.n C r /.n C r 4/
a
n1
.r/; a
n
.r/ D .1/
n
n
Y
j D1
.j C r 7/.j C r 6/
.j C r/.j C r 4/
. Setting r D 4 yields
y
1
D x
4
1
2
5
x
. ´ D 1C10xC50x
2
C200x
3
; C D
p
1
.3/
4
a
3
.0/ D 300. a
1
.r/ D
.r 6/.r 5/
.r 3/.r C 1/
;
a
0
1
.r/ D
3.3r
2
22r C 31/
.r 3/
2
.r C 1/
2
; a
0
1
.4/ D 27=25. a
2
.r/ D .r4/c
2
.r/, with c
2
.r/ D
.r 6/.r 5/
2
.r 3/.r 2/.r C 1/.r C 2/
,
so a
0
2
.4/ D c
2
.4/ D 1=30. If n 3, then a
n
.r/ D .r 4/
2
b
n
.r/ where b
0
n
.4/ exists, so a
0
n
.4/ D 0 and
y
2
D 1 C 10x C 50x
2
C 200x
3
300
y
1
ln x C
27
25
x
5
1
30
x
6
.
7.7.12. p
0
.r/ D .r 2/.r C 2/; p
1
.r/ D 2r 1; r
1
D 2; r
2
D 2; k D r
1
r
2
D 4; a
n
.r/ D
2j C 2r 1
.j C r 2/.j C r C 2/
a
n1
.r/; a
n
.r/ D
n
Y
j D1
2n C 2r 1
.n C r 2/.n C r C 2/
; a
n
.2/ D
1
Q
n
j D1
2jC3
j C4
;
y
1
D x
2
1
X
nD0
1
0
@
n
Y
j D1
2j C 3
j C 4
1
A
x
n
; ´ D x
2
1 C x C
1
4
x
2
1
12
x
3
; C D
p
1
.1/
4
a
3
.2/ D 1=16.
By logarithmic differentiation,
a
0
n
.r/ D 2a
n
.r/
n
X
j D1
j
2
C j.2r 1/ C r
2
r C 4
.j C r 2/.j C r C 2/.2j C 2r 1/
; a
0
n
.2/ D 2a
n
.2/
n
X
j D1
.j
2
C 3j C 6/
j.j C 4/.2j C 3/
;
y
2
D x
2
1 C x C
1
4
x
2
1
12
x
3
1
16
y
1
ln x C
x
2
8
1
X
nD1
1
0
@
n
Y
j D1
2j C 3
j C 4
1
A
0
@
n
X
j D1
.j
2
C 3j C 6/
j.j C 4/.2j C 3/
1
A
x
n
.
7.7.14. p
0
.r/ D .r C 1/.r C 7/; p
1
.r/ D .r C 5/.2r C 1/; r
1
D 1; r
2
D 7; k D r
1
r
2
D 6; a
n
.r/ D
.n C r C 4/.2n C 2r 1/
.n C r C 1/.n C r C 7/
a
n1
.r/; a
n
.r/ D .1/
n
n
Y
j D1
.j C r C 4/.2j C 2r 1/
.j C r C 1/.j C r C 7/
;
120 Chapter 7
Series Solutions of Linear Second Order Equations
a
n
.1/ D
.1/
n
0
@
n
Y
j D1
.j C 3/.2j 3/
j C 6
1
A
; y
1
D
1
x
1
X
nD0
.1/
n
0
@
n
Y
j D1
.j C 3/.2j 3/
j C 6
1
A
x
n
; ´ D x
7
1 C
26
5
x C
143
20
x
2
;
C D
p
1
.2/
6
a
5
.7/ D 0; y
2
D x
7
1 C
26
5
x C
143
20
x
2
.
7.7.16. p
0
.r/ D .3r 10/.3r C 2/; p
1
.r/ D r .3r 4/; r
1
D 10=3; r
2
D 2=3; k D r
1
r
2
D 4;
a
n
.r/ D
.n C r 1/.3n C 3r 7/
.3n C 3r 10/.3n C 3r C 2/
a
n1
.r/; a
n
.r/ D .1/
n
n
Y
j D1
.j C r 1/.3j C 3r 7/
.3j C 3r 10/.3j C 3r C 2/
;
a
n
.10=3/ D
.1/
n
.n C 1/
9
n
0
@
n
Y
j D1
3j C 7
j C 4
1
A
; y
1
D x
10=3
1
X
nD0
.1/
n
.n C 1/
9
n
0
@
n
Y
j D1
3j C 7
j C 4
1
A
x
n
; ´ D
x
2=3
1 C
4
27
x
1
243
x
2
; C D
p
1
.7=3/
36
a
3
.2=3/ D 0; y
2
D x
2=3
1 C
4
27
x
1
243
x
2
.
7.7.18. p
0
.r/ D .r 3/.r C 2/; p
1
.r/ D .r C 1/
2
; r
1
D 3; r
2
D 2; k D r
1
r
2
D 5;
a
n
.r/ D
.n C r /
2
.n C r 3/.n C r C 2/
a
n1
.r/; a
n
.r/ D .1/
n
n
Y
j D1
.j C r/
2
.j C r 3/.j C r C 2/
; a
n
.3/ D
.1/
n
Q
n
j D1
.j C3/
2
j C5
; y
1
D x
3
1
X
nD0
.1/
n
0
@
n
Y
j D1
.j C 3/
2
j C 5
1
A
x
n
; ´ D x
2
1 C
1
4
x
; C D
p
1
.2/
5
a
4
.2/ D
0; y
2
D x
2
1 C
1
4
x
.
7.7.20. p
0
.r/ D .r 6/.r 1/; p
1
.r/ D .r 8/.r 4/; r
1
D 6; r
2
D 1; k D r
1
r
2
D 5; a
n
.r/ D
.n C r 9/.n Cr 5/
.n C r 6/.n Cr 1/
a
n1
.r/; y
1
D x
6
1 C
2
3
x C
1
7
x
2
; ´ D x
1 C
21
4
x C
21
2
x
2
C
35
4
x
3
;
C D
p
1
.5/
6
a
5
.1/ D 0; y
2
D x
1 C
21
4
x C
21
2
x
2
C
35
4
x
3
.
7.7.22. p
0
.r/ D r.r 10/; p
1
.r/ D 2.r 6/.r C 1/; r
1
D 10; r
2
D 0; k D r
1
r
2
D 10; a
n
.r/ D
2.n C r 7/
n C r 10
a
n1
.r/; a
n
.r/ D .2/
n
.n C r 9/.n C r 8/.n C r 7/
.r 9/.r 8/.r 7/
; a
n
.10/ D
.1/
n
2
n
.n C 1/.n C 2/.n C 3/
6
;
y
1
D
x
10
6
1
X
nD0
.1/
n
2
n
.n C 1/.n C2/.n C 3/x
n
; ´ D
1
4
3
x C
5
3
x
2
40
21
x
3
C
40
21
x
4
32
21
x
5
C
16
21
x
6
;
C D
p
1
.9/
10
a
9
.0/ D 0; y
2
D
1
4
3
x C
5
3
x
2
40
21
x
3
C
40
21
x
4
32
21
x
5
C
16
21
x
6
.
Note: in the solutions to Exercises 7.7.23–7.7.40, ´ D x
r
2
P
k1
mD0
a
2m
.r
2
/x
2m
.
7.7.24. p
0
.r/ D .r 6/.r 2/; p
2
.r/ D r; r
1
D 6; r
2
D 2; k D .r
1
r
2
/=2 D 2; a
2m
.r/ D
a
2m2
.r/
2m C r 6
; a
2m
.r/ D
.1/
m
Q
m
j D1
.2j C r 6/
; a
2m
.6/ D
.1/
m
2
m
; y
1
D x
6
1
X
mD0
.1/
m
2
m
x
2m
D x
6
e
x
2
=2
;
´ D x
2
1 C
1
2
x
2
; C D
p
2
.4/
4
a
2
.2/ D 1=2. B y logarithmic differentiation, a
0
2m
.r/ D a
2m
.r/
m
X
j D1
1
2j C r 6
;
a
0
2m
.6/ D a
2m
.6/
m
X
j D1
1
2j
; y
2
D x
2
1 C
1
2
x
2
1
2
y
1
ln x C
x
6
4
1
X
mD1
.1/
m
2
m
0
@
m
X
j D1
1
j
1
A
x
2m
.
Section 7.7
The Method of Frobenius III
121
7.7.26. p
0
.r/ D .r 1/.r C 1/; p
2
.r/ D 2r C 10; r
1
D 1; r
2
D 1; k D .r
1
r
2
/=2 D 1;
a
2m
.r/ D
2.2m Cr C 3/
.2m C r 1/.2m Cr C 1/
a
2m2
.r/; a
2m
.r/ D .2/
m
m
Y
j D1
2j C r C 3
.2j C r 1/.2j C r C 1/
;
a
2m
.1/ D
.1/
m
.m C 2/
2
; y
1
D
x
2
1
X
mD0
.1/
m
.m C 2/
x
2m
; ´ D x
1
; C D
p
2
.1/
2
a
0
.1/ D 4.
By logarithmic differentiation,
a
0
2m
.r/ D a
2m
.r/
m
X
j D1
.4j
2
C 4j.r C 3/ C r
2
C 6r C 1/
.2j C r 1/.2j C r C 1/.2j C r C 3/
;
a
0
2m
.1/ D a
2m
.1/
m
X
j D1
j
2
C 4j C 2
2j.j C 1/.j C 2/
;
y
2
D x
1
4y
1
ln x C x
1
X
mD1
.1/
m
.m C 2/
0
@
m
X
j D1
j
2
C 4j C 2
j.j C 1/.j C 2/
1
A
x
2m
.
7.7.28. p
0
.r/ D .2r C 1/.2r C 5/; p
2
.r/ D 2r C 3; r
1
D 1=2; r
2
D 5=2; k D .r
1
r
2
/=2 D 1;
a
2m
.r/ D
.4m C 2r 1/
.4m C 2r C 1/.4m C 2r C 5/
a
2m2
.r/; a
2m
.r/ D .1/
m
m
Y
j D1
.4j C 2r 1/
.4j C 2r C 1/.4j C 2r C5/
;
a
2m
.1=2/ D
.1/
m
Q
m
j D1
.2j 1/
8
m
mŠ.m C 1/Š
; y
1
D x
1=2
1
X
mD0
.1/
m
Q
m
j D1
.2j 1/
8
m
mŠ.m C 1/Š
x
2m
; ´ D x
5=2
; C D
p
2
.5=2/
8
a
0
.5=2/ D 1=4. By logarithmic differentiation,
a
0
2m
.r/ D 2a
2m
.r/
m
X
j D1
.16j
2
C 8j.2r 1/ C 4r
2
4r 11/
.4j C 2r 1/.4j C 2r C 1/.4j C 2r C 5/
; a
0
2m
.1=2/ D a
2m
.1=2/
m
X
j D1
2j
2
2j 1
2j.j C 1/.2j 1/
;
y
2
D x
5=2
C
1
4
y
1
ln x x
1=2
1
X
mD1
.1/
m
Q
m
j D1
.2j 1/
8
mC1
mŠ.m C 1/Š
0
@
m
X
j D1
2j
2
2j 1
j.j C 1/.2j 1/
1
A
x
2m
.
7.7.30. p
0
.r/ D .r 2/.r C2/; p
2
.r/ D 2.r C4/; r
1
D 2; r
2
D 2; k D .r
1
r
2
/=2 D 2; a
2m
.r/ D
2
2m C r 2
a
2m2
.r/; a
2m
.r/ D
2
m
Q
m
j D1
.2j C r 2/
; a
2m
.2/ D
1
; y
1
D x
2
1
X
mD0
1
x
2m
D x
2
e
x
2
;
´ D x
2
.1x
2
/; C D
p
2
.0/
4
a
2
.2/ D 2. By logarithmic differentiatio n, a
0
2m
.r/ D a
2m
.r/
m
X
j D1
1
2j C r 2
;
a
0
2m
.2/ D a
2m
.2/
m
X
j D1
1
2j
; y
2
D x
2
.1 x
2
/ 2y
1
ln x C x
2
1
X
mD1
1
0
@
m
X
j D1
1
j
1
A
x
2m
.
7.7.32. p
0
.r/ D .3r 13/.3r 1/; p
2
.r/ D 2.5 3r/; r
1
D 13=3; r
2
D 1=3; k D .r
1
r
2
/=2 D 2;
a
2m
.r/ D
2.6m C 3r 11/
.6m C 3r 13/.6m C 3r 1/
a
2m2
.r/; a
2m
.r/ D 2
m
m
Y
j D1
.6j C 3r 11/
.6j C 3r 13/.6j C 3r 1/
;
a
2m
.13=3/ D
Q
m
j D1
.3j C 1/
9
m
mŠ.m C 2/Š
; y
1
D 2x
13=3
1
X
mD0
Q
m
j D1
.3j C 1/
9
m
mŠ.m C 2/Š
x
2m
; ´ D x
1=3
1 C
2
9
x
2
; C D
p
2
.7=3/
36
a
2
.1=3/ D 2=81. By logarithmic d ifferentiation, a
0
2m
.r/ D 9a
2m
.r/
m
X
j D1
.12j
2
C 4j.3r 11/ C3r
2
22r C 47/
.6j C 3r 13/.6j C 3r 11/.6j C 3r 1/
;
122 Chapter 7
Series Solutions of Linear Second Order Equations
a
0
2m
.13=3/ D a
2m
.13=3/
m
X
j D1
3j
2
C 2j C 2
2j.j C 2/.3j C 1/
;
y
2
D x
1=3
1 C
2
9
x
2
C
2
81
0
@
y
1
ln x x
13=3
1
X
mD0
Q
m
j D1
.3j C 1/
9
m
mŠ.m C 2/Š
0
@
m
X
j D1
3j
2
C 2j C 2
j.j C 2/.3j C 1/
1
A
x
2m
1
A
.
7.7.34. p
0
.r/ D .r 2/.r C 2/; p
2
.r/ D 3.r 4/; r
1
D 2; r
2
D 2; k D .r
1
r
2
/=2 D 2;
a
2m
.r/ D
3.2m C r 6/
.2m C r 2/.2m C r C 2/
a
2m2
.r/; y
1
D x
2
1
1
2
x
2
; ´ D x
2
1 C
9
2
x
2
; C D
p
2
.0/
4
a
2
.2/ D 27=2; a
2
.r/ D
3.r 4/
r.r C 4/
, a
0
2
.r/ D
3.r
2
8r 16/
r
2
.r C 4/
2
, a
0
2
.2/ D 7=12. If m 2,
then a
2m
.r/ D .r 2/c
2m
.r/ where c
2m
.r/ D
3
m
.r 4/
.2m C r 4/.2m C r 2/
Q
m
j D1
.2j C r C 2/
, so
a
0
2m
.2/ D c
2m
.2/ D
3
2
m
m.m 1/.m C 2/Š
; y
2
D x
2
1 C
9
2
x
2
27
2
y
1
ln x C
7
12
x
4
x
2
1
X
mD2
3
2
m
m.m 1/.m C 2/Š
x
2m
!
.
7.7.36. p
0
.r/ D .2r 5/.2r C 7/; p
2
.r/ D .2r 1/
2
; r
1
D 5=2; r
2
D 7=2; k D .r
1
r
2
/=2 D 3;
a
2m
.r/ D
4m C2r 5
4m C 2r C 7
a
2m2
.r/; a
2m
.r/ D
.2r 1/.2r C 3/.2r C 7/
.4m C 2r 1/.4m C2r C 3/.4m C 2r C 7/
; a
2m
.5=2/ D
.1/
m
.m C 1/.m C 2/.m C 3/
; y
1
D x
5=2
1
X
mD0
.1/
m
.m C 1/.m C2/.m C 3/
x
2m
; ´ D x
7=2
.1 C x
2
/
2
C D
p
2
.1=2/
24
a
4
.7=2/ D 0; y
2
D x
7=2
.1 C x
2
/
2
.
7.7.38. p
0
.r/ D .r 3/.r C 7/; p
2
.r/ D r .r C 1/; r
1
D 3; r
2
D 7; k D .r
1
r
2
/=2 D 5; a
2m
.r/ D
.2m C r 2/.2m C r 1/
.2m C r 3/.2m C r C 7/
a
2m2
.r/; a
2m
.r/ D .1/
m
m
Y
j D1
.2j C r 2/.2j C r 1/
.2j C r 3/.2j C r C 7/
; a
2m
.3/ D
.1/
m
m C 1
2
m
0
@
m
Y
j D1
2j C 1
j C 5
1
A
; y
1
D x
3
1
X
mD0
.1/
m
m C 1
2
m
0
@
m
Y
j D1
2j C 1
j C 5
1
A
x
2m
; ´ D x
7
1 C
21
8
x
2
C
35
16
x
4
C
35
64
x
6
C D
p
2
.1/
10
a
8
.7/ D 0; y
2
D x
7
1 C
21
8
x
2
C
35
16
x
4
C
35
64
x
6
.
7.7.40. p
0
.r/ D .2r 3/.2r C 5/; p
2
.r/ D .2r 1/.2r C 1/; r
1
D 3=2; r
2
D 5=2; k D
.r
1
r
2
/=2 D 2; a
2m
.r/ D
4m C 2r 5
4m C 2r C 5
a
2m2
.r/; a
2m
.r/ D .1/
m
m
Y
j D1
4j C 2r 5
4j C 2r C 5
; a
2m
.3=2/ D
.1/
m
Q
m
j D1
.2j 1/
2
m1
.m C 2/Š
; y
1
D x
3=2
1
X
mD0
.1/
m
Q
m
j D1
.2j 1/
2
m1
.m C 2/Š
x
2m
; ´ D x
5=2
1 C
3
2
x
2
C D
p
2
.1=2/
16
a
2
.5=2/ D
0; y
2
D x
5=2
1 C
3
2
x
2
.
7.7.42. p
0
.r/ D r
2
2
; p
2
.r/ D 1; r
1
D ; r
2
D ; k D .r
1
r
2
/=2 D ; a
2m
.r/ D
a
2m2
.r/
.2m C r C /.2m C r /
; a
2m
.r/ D
.1/
m
Q
m
j D1
.2j Cr C /.2j C r /
; a
2m
./ D
.1/
m
4
m
Q
m
j D1
.j C /
;
a
2m
./ D
.1/
m
4
m
Q
m
j D1
.j /
, j D 0; : : : ; 1; y
1
D x
1
X
mD0
.1/
m
4
m
Q
m
j D1
.j C /
x
2m
; ´ D
Section 7.7
The Method of Frobenius III
123
x
1
X
mD0
.1/
m
4
m
Q
m
j D1
.j /
x
2m
; C D
p
2
. 2/
2
a
22
./ D
a
22
./
2
D
2
4
Š. 1/Š
. By
logarithmic differentiation, a
0
2m
.r/ D 2a
2m
.r/
m
X
j D1
2j C
.2j C r C /.2j C r /
; a
0
2m
./ D a
2m
./
m
X
j D1
2j C
2j.j C /
;
y
2
D x
1
X
mD0
.1/
m
4
m
Q
m
j D1
.j /
x
2m
2
4
Š. 1/Š
0
@
y
1
ln x
x
2
1
X
mD1
.1/
m
4
m
Q
m
j D1
.j C /
0
@
m
X
j D1
2j C
j.j C /
1
A
x
2m
1
A
.
7.7.44. Since a
n
.r
2
/ D
p
1
.n C r
2
1/
p
0
.n C r
2
/
a
n1
.r
2
/, 1 n k1, a
k1
.r
2
/ D .1/
k1
k1
Y
j D1
p
1
.r
2
C j 1/
p
0
.r
2
Cj /
.
But C D
p
1
.r
1
1/
k˛
0
a
k1
.r
2
/ D
p
1
.r
2
C k 1/
k˛
0
a
k1
.r
2
/ D ./
k
Q
k
j D1
p
1
.r
2
C j 1/
k˛
0
Q
k1
j D1
p
0
.r
2
C j /
D 0 if
and only if
k
Y
j D1
p
1
.r
2
C j 1/ D 0.
7.7.46. Since p
1
.r/ D
1
, a
n
.r/ D
1
˛
0
.n C r r
1
/.n C r r
2
/
a
n1
.r/ and (A) a
n
.r/ D .1/
n
1
˛
0
n
1
Q
n
j D1
.j C r r
1
/.j C
Therefore, a
n
.r
1
/ D
.1/
n
1
˛
0
n
1
Q
n
j D1
.j C k/
for n 0 (so Ly
1
D 0) and a
n
.r
2
/ D
.1/
n
1
˛
0
n
1
Q
n
j D1
.j k/
for n D 0; : : : ; k 1. Ly
2
D 0 if y
2
D x
r
2
k1
X
nD0
a
n
.r
2
/x
n
C C
y
1
ln x C x
r
1
1
X
nD1
a
0
n
.r
1
/x
n
!
if C D
1
k˛
0
a
k1
.r
2
/ D
1
k˛
0
.1/
k1
.k 1/Š
1
˛
0
k1
.1/
k1
.k 1/Š
D
1
kŠ.k 1/Š
1
˛
0
k
. From (A), ln ja
n
.r/j D
n ln
ˇ
ˇ
ˇ
ˇ
1
˛
0
ˇ
ˇ
ˇ
ˇ
n
X
j D1
..ln jj C r r
1
j C ln jj C r r
2
j/, so a
0
n
.r/ D a
n
.r/
n
X
j D1
1
j C r r
1
C
1
j C r r
2
and a
0
n
.r
1
/ D a
n
.r
1
/
n
X
j D1
2j C k
j.j C k/
.
7.7.48. (a) Fr om Exer cise 7.6.66( a) of Section 7.6, L
@y
@r
.x; r/
D p
0
0
.r/x
r
Cx
r
p
0
.r/ ln x. Setting r D
r
1
yields L
y
1
ln x C x
r
1
1
X
nD1
a
0
n
.r
1
/
!
D p
0
0
.r
1
/x
r
1
. Since p
0
0
.r/ D ˛
0
.2r r
1
r
2
/, p
0
0
.r
1
/ D k˛
0
.
(b) From Exercise 7.5.57 of Sect ion 7.5, L
x
r
2
1
X
nD0
a
n
.r
2
/x
n
!
D x
r
2
1
X
nD0
b
n
x
n
, where b
0
D p
0
.r
2
/ D
0 and b
n
D
n
X
j D0
p
j
.n C r
2
j /a
nj
.r
2
/ if n 1. From the defini tion of fa
n
.r
2
/g, b
n
D 0 if n ¤ k,
while b
k
D
k
X
j D0
p
k
.k C r
2
j /a
kj
.r
2
/ D
k
X
j D1
p
j
.r
1
j /a
kj
.r
2
/.
(d) Let fQa
n
.r
2
/g be the coefficients that would obtained if Qa
k
.r
2
/ D 0. Then a
n
.r
2
/ D Qa
n
.r
2
/ if n D
124 Chapter 7
Series Solutions of Linear Second Order Equations
0; : : : ; k 1, and (A) a
n
.r
2
/ Qa
n
.r
2
/ D
1
p
0
.n C r
2
/
nk
X
j D0
p
j
.n Cr
2
j /.a
nj
.r
2
/ Qa
nj
r
2
/ if n > k.
Now let c
m
D a
kCm
.r
2
/ Qa
kCm
.r
2
/. Sett ing n D m Ck in (A) and recalling the k Cr
2
D r
1
yields (B)
c
m
D
1
p
0
.m C r
1
/
m
X
j D0
p
j
.m Cr
1
j /c
mj
. Since c
k
D a
k
.r
2
/, (B) implies that c
m
D a
k
.r
2
/a
m
.r
1
/
for all m 0, which implies the conclusion.
CHAPTER 8
Laplace Transforms
8.1 INTRODUCTION TO THE LAPLACE TRANSFORM
8.1.2. (a) cosh t sin t D
1
2
e
t
sin t C e
t
sin t
$
1
2
1
.s 1/
2
C 1
C
1
.s C 1/
2
C 1
D
s
2
C 2
Œ.s 1/
2
C 1Œ.s C 1/
2
C 1
.
(b) sin
2
t D
1 cos 2t
2
$
1
2
1
s
s
.s
2
C 4/
D
2
s.s
2
C 4/
.
(c) cos
2
2t D
1
2
1
s
C
s
s
2
C 16
D
s
2
C 8
s.s
2
C 16/
.
(d) cosh
2
t D
.e
t
C e
t
/
2
/
4
D
.e
2t
C 2 C e
2t
/
4
$
1
4
1
s 2
C
2
s
C
1
s C 2
D
s
2
2
s.s
2
4/
.
(e) t sinh 2t D
te
2t
te
2t
2
$
1
2
1
.s 2/
2
1
.s C 2/
2
D
4s
.s
2
4/
2
.
(f) sin t cos t D
sin 2t
2
$
1
s
2
C 4
.
(g) sin.t C =4/ D sin t cos.=4/ C cos t cos.=4/ $
1
p
2
s C 1
s
2
C 1
.
(h) cos 2t cos 3t $
s
s
2
C 4
s
s
2
C 9
D
5s
.s
2
C 4/.s
2
C 9/
.
(i) sin 2t C cos 4t $
2
s
2
C4
C
s
s
2
C 16
D
s
3
C 2s
2
C 4s C 32
.s
2
C 4/.s
2
C 16/
.
8.1.6. I f F.s/ D
Z
1
0
e
st
f .t/ dt, then F
0
.s/ D
Z
1
0
.te
st
/f .t/ dt D
Z
1
0
e
st
.tf .t// dt. Apply-
ing this argument repeatedly yields the assertion.
8.1.8. Let f .t/ D 1 and F .s/ D 1=s. From Exercise 8.1.6, t
n
$ .1/
n
F
.n/
.s/ D nŠ=s
nC1
.
8.1.10. If jf .t/j Me
s
0
t
for t t
0
, then jf .t/e
st
j Me
.ss
0
/t
for t t
0
. Let g.t/ D e
st
f .t/,
w.t/ D Me
.ss
0
/t
, and D t
0
. Since
R
1
t
0
w.t/ dt converges if s > s
0
, F .s/ is defined for s > s
0
.
8.1.12.
Z
T
0
e
st
Z
t
0
f ./ d
dt D
e
st
s
Z
t
0
f ./ d
ˇ
ˇ
ˇ
ˇ
T
0
C
1
s
Z
T
0
e
st
f .t/ dt D
e
sT
s
Z
T
0
f ./ d C
1
s
Z
T
0
e
st
f .t/ dt. Since f is of ex ponential order s
0
, the second integral on the right converges to
125
126 Chapter 8
Laplace Transforms
1
s
L.f / as T ! 1 (Exercise 8.1.10). Now it suffices to show that (A) lim
T !1
e
sT
Z
T
0
f ./ d D 0
if s > s
0
. Supp ose t hat jf .t/j Me
s
0
t
if t t
0
and jf .t/j K if 0 t t
0
, and let T > t
0
. Then
ˇ
ˇ
ˇ
ˇ
ˇ
Z
T
0
f ./ d
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
Z
t
0
0
f ./ d
ˇ
ˇ
ˇ
ˇ
C
ˇ
ˇ
ˇ
ˇ
ˇ
Z
T
t
0
f ./ d
ˇ
ˇ
ˇ
ˇ
ˇ
< Kt
0
C M
Z
T
t
0
e
s
0
d < Kt
0
C
Me
s
0
T
s
0
, which
proves (A).
8.1.14. (a) If T > 0, then
Z
T
0
e
st
f .t/ dt D
Z
T
0
e
.ss
0
/t
.e
s
0
t
f .t// dt. Use integration by parts with
u D e
.ss
0
/t
, dv D e
s
0
t
f .t/ dt, du D .s s
0
/e
.ss
0
/t
, and v D g t obtain
Z
T
0
e
st
f .t/ dt D
e
.ss
0
/t
g.t/
ˇ
ˇ
ˇ
ˇ
T
0
C .s s
0
/
Z
T
0
e
.ss
0
/t
g.t/ dt. Since g.0/ D 0 this reduces to
Z
T
0
e
st
f .t/ dt D
e
.ss
0
/T
g.T / C .s s
0
/
Z
T
0
e
.ss
0
/t
g.t/ dt. Since jg.t/j M for all t 0, we can let t ! 1 to
conclude that
Z
1
0
e
st
f .t/ dt D .s s
0
/
Z
1
0
e
.ss
0
/t
g.t/ dt if s > s
0
.
(b) If F .s
0
/ exists, then g.t/ is bounded on Œ0; 1/. N ow apply ( a).
(c) Since f .t/ D
1
2
d
dt
sin.e
t
2
/,
ˇ
ˇ
ˇ
ˇ
Z
t
0
f ./ d
ˇ
ˇ
ˇ
ˇ
D
jsin.e
t
2
/ sin.1/j
2
1 for all t 0. Now apply (a)
with s
0
D 0.
8.1.16. (a) / D
Z
1
0
x
˛1
e
x
dx D
x
˛
e
x
˛
ˇ
ˇ
ˇ
ˇ
1
0
C
1
˛
Z
1
0
x
˛
e
x
dx D
C 1/
˛
.
(b) Use indu ction. .1/ D
Z
1
0
e
x
dx D 1. If (A) .n C1/ D , then .n C2/ D .n C1/.n C1/
(from (a)) D .n C 1/nŠ (from (A)) D .n C 1/Š.
(c) C1/ D
Z
1
0
x
˛
e
x
dt. Let x D st. Then C1/ D
Z
1
0
.st/
˛
e
st
s dt, so
Z
1
0
e
st
t
˛
dt D
C 1/
˛
.
8.1.18. (a)
Z
2
0
e
st
f .t/ dt D
Z
1
0
e
st
t dtC
Z
2
1
e
st
.2t/ dt D
1
s
2
e
s
.s C 1/
s
2
C
e
s
.s 1/
s
2
C
e
2s
s
2
D
2e
s
s
2
C
e
2s
s
2
C
1
s
2
D
.1 e
s
/
2
s
2
. Therefore,F .s/ D
.1 e
s
/
2
s
2
.1 e
2s
/
D
1 e
s
s
2
.1 C e
s
/
D
1
s
2
tanh
s
2
.
(b)
Z
1
0
e
st
f .t/ dt D
Z
1=2
0
e
st
dt
Z
1
1=2
e
st
dt D
1
s
e
s=2
s
C
e
s
s
e
s=2
s
D
2e
s=2
s
C
e
s
s
C
1
s
D
.1 e
s=2
/
2
s
. Therefore,F .s/ D
.1 e
s=2
/
2
s.1 e
s
/
D
1 e
s=2
s.1 C e
s=2
/
D
1
s
tanh
s
4
.
(c)
Z
0
e
st
f .t/ dt D
Z
0
e
st
sin t dt D
1 C e
s
.s
2
C 1/
. Therefore,F.s/ D
1 C e
s
.s
2
C 1/.1 e
s
/
1
s
2
C 1
coth
s
2
.
(d)
Z
2
0
e
st
f .t/ dt D
Z
0
e
st
sin t dt D
1 C e
s
.s
2
C 1/
. Therefore,F .s/ D
1 C e
s
.s
2
C 1/1 C e
2s
D
1
.s
2
C 1/.1 e
s
/
.
Section 8.2
The Inverse Laplace Transform
127
8.2 THE INVERSE LAPLACE TRANSFORM
8.2.2. (a)
2s C 3
.s 7/
4
D
2.s 7/ C 17
.s 7/
4
D
2
.s 7/
3
C
17
.s 7/
4
D
.s 7/
3
C
17
6
.s 7/
4
$ e
7t
t
2
C
17
6
t
3
.
(b)
s
2
1
.s 2/
6
D
Œ.s 2/ C 2
2
1
.s 2/
6
D
.s 2/
2
C 4.s 2/ C 3
.s 2/
6
D
1
.s 2/
4
C
4
.s 2/
5
C
3
.s 2/
6
D
1
6
.s 2/
4
C
1
6
.s 2/
5
C
1
40
.s 2/
6
$
1
6
t
3
C
1
6
t
4
C
1
40
t
5
e
2t
.
(c)
s C 5
s
2
C 6s C 18
D
.s C 3/
.s C 3/
2
C 9
C
2
3
3
.s C3/
2
C 9
$ e
3t
cos 3t C
2
3
sin 3t
.
(d)
2s C 1
s
2
C9
D 2
s
s
2
C 9
C
1
3
3
s
2
C 9
$ 2 cos 3t C
1
3
sin 3t.
(e)
s
s
2
C 2s C 1
D
.s C 1/ 1
.s C 1/
2
D
1
s C 1
1
.s C1/
2
$ .1 t/e
t
.
(f)
s C 1
s
2
9
D
s
s
2
9
C
1
3
3
s
2
9
$ cosh 3t C
1
3
sinh 3t.
(g) Expand t he numerator in powers of s C 1: s
3
C 2s
2
s 3 D Œ.s C 1/ 1
3
C 2Œ.s C 1/ 1
2
Œ.s C1/1 3 D .s C1/
3
.s C1/
2
2.s C1/1; t herefore
s
3
C 2s
2
s 3
.s C 1/
4
D
1
s C 1
1
.s C 1/
2
2
.s C 1/
3
1
6
6
.s C 1/
4
$
1 t t
2
1
6
t
3
e
t
.
(h)
2s C 3
.s 1/
2
C 4
D 2
.s 1/
.s 1/
2
C 4
C
5
2
2
.s 1/
2
C 4
$ e
t
2 cos 2t C
5
2
sin 2t
.
(i)
1
s
s
s
2
C1
$ 1 cos t.
(j)
3s C 4
s
2
1
D
3s
s
2
1
C
4
s
2
1
$ 3 cosh t C 4 sinh t. Alternatively,
3s C 4
s
2
1
D
3s C 4
.s 1/.s C 1/
D
1
2
7
s 1
1
s C 1
$
7e
t
e
t
2
.
(k)
3
s 1
C
4s C 1
s
2
C 9
D 3
1
s 1
C4
s
s
2
C 9
C
1
3
3
s
2
C9
$ 3e
t
C 4 cos 3t C
1
3
sin 3t.
(l)
3
.s C 2/
2
2s C 6
s
2
C 4
D 3
1
.s C 2/
2
2
s
s
2
C4
3
2
s
2
C 4
$ 3te
2t
2 cos 2t 3 sin 2t.
8.2.4. ( a)
2 C 3s
.s
2
C 1/.s C 2/.s C 1/
D
A
s C 2
C
B
s C1
C
C s C D
s
2
C 1
;
where
A.s
2
C 1/.s C 1/ C B.s
2
C 1/.s C 2/ C .C s C D/.s C 2/.s C 1/ D 2 C 3s:
5A D 4 .set s D 2/I
2B D 1 .set s D 1/I
A C 2B C 2D D 2 .set s D 0/I
A C B C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D
4
5
, B D
1
2
, C D
3
10
, D D
11
10
. Therefore,
2 C 3s
.s
2
C 1/.s C 2/.s C 1/
D
4
5
1
s C 2
1
2
1
s C 1
1
10
3s 11
s
2
C 1
$
4
5
e
2t
1
2
e
t
3
10
cos t C
11
10
sin t:
128 Chapter 8
Laplace Transforms
(b)
3s
2
C 2s C 1
.s
2
C 1/.s
2
C 2s C 2/
D
As CB
s
2
C 1
C
C.s C 1/ C D
.s C 1/
2
C 1
;
where
.As CB/..s C 1/
2
C 1/ C.C.s C 1/ C D/.s
2
C 1/ D 3s
2
C 2s C 1:
2B C C C D D 1 .set s D 0/I
A C B C 2D D 2 .set s D 1/I
2B C C C D D 1 .set s D 0/I
A C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 6=5, B D 2=5, C D 6=5, D D 7=5. Therefore,
3s
2
C2s C 1
.s
2
C 1/.s
2
C 2s C 2/
D
1
5
6s C 2
s
2
C 1
6.s C 1/ 7
.s C 1/
2
C 1
$
6
5
cos t C
2
5
sin t
6
5
e
t
cos t C
7
5
e
t
sin t:
(c) s
2
C 2s C 5 D .s C 1/
2
C 4;
3s C 2
.s 2/..s C 1/
2
C 4/
D
A
s 2
C
B.s C 1/ C C
.s C 1/
2
C 4
;
where
A
.s C 1/
2
/ C 4
C .B.s C 1/ C C / .s 2/ D 3s C 2:
13A D 8 .set s D 2/I
4A 3C D 1 .set s D 1/I
A CB D 0 .equate coefficients of s
2
/:
Solving this system yields A D
8
13
, B D
8
13
, C D
15
13
. Therefore,
3s C 2
.s 2/..s C 1/
2
C 4/
D
1
13
8
s 2
8.s 1/ 15
.s C 1/
2
C 4
$
8
13
e
2t
8
13
e
t
cos 2t C
15
26
e
t
sin 2t:
(d)
3s
2
C 2s C 1
.s 1/
2
.s C2/.s C 3/
D
A
s 1
C
B
.s 1/
2
C
C
s C 2
C
D
s C 3
;
where
.A.s 1/ C B/.s C 2/.s C 3/ C .C.s C 3/ C D.s C 2//.s 1/
2
D 3s
2
C 2s C 1:
12B D 6 .set s D 1/I
9C D 9 .set s D 2/I
16D D 22 .set s D 3/I
A C C C D D 0 .equate coefficients of s
3
/:
Solving this system yields A D 3=8, B D 1=2, C D 1, D D 11=8. Therefore,
3s
2
C2s C 1
.s 1/
2
.s C 2/.s C 3/
D
3
8
1
s 1
C
1
2
1
.s 1/
2
C
1
s C 2
11
8
1
s C3
$
3
8
e
t
C
1
2
te
t
C e
2t
11
8
e
3t
:
Section 8.2
The Inverse Laplace Transform
129
(e)
2s
2
C s C 3
.s 1/
2
.s C 2/
2
D
A
s 1
C
B
.s 1/
2
C
C
s C 2
C
D
.s C 2/
2
;
where
.A.s 1/ C B/.s C 2/
2
C .C.s C 2/ C D/.s 1/
2
D 2s
2
C s C 3:
9B D 6 .set s D 1/I
9D D 9 .set s D 2/I
4A C 4B C 2C C D D 3 .set s D 0/I
A C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1=9, B D 2=3, C D 1=9, D D 1. Therefore,
2s
2
C s C 3
.s 1/
2
.s C 2/
2
D
1
9
1
s 1
C
2
3
1
.s 1/
2
1
9
1
s C 2
C
1
.s C 2/
2
$
1
9
e
t
C
2
3
te
t
1
9
e
2t
C te
2t
:
(f)
3s C 2
.s
2
C 1/.s 1/
2
D
A
s 1
C
B
.s 1/
2
C
C s C D
s
2
C 1
;
where
A.s 1/.s
2
C 1/ CB.s
2
C 1/ C .C s C D/.s 1/
2
D 3s C 2: .A/
Setting s D 1 yields 2B D 5, so B D
5
2
. Substi tuting this into (A) shows t hat
A.s 1/.s
2
C 1/ C .C s C D/.s 1/
2
D 3s C 2
5
2
.s
2
C 1/
D
5s
2
6s C 1
2
D
.s 1/.5s 1/
2
:
Therefore,
A.s
2
C 1/ C .C s C D/.s 1/ D
1 5s
2
:
2A D 2 .set s D 1/I
A D D 1=2 .set s D 0/I
A C C D 0 .equate coefficients of s
2
/:
Solving this system yields A D 1, C D 1, D D
3
2
. Therefore,
3s C 2
.s
2
C 1/.s 1/
2
D
1
s 1
C
5
2
1
.s 1/
2
C
s 3=2
s
2
C 1
$ e
t
C
5
2
te
t
C cos t
3
2
sin t:
8.2.6. ( a)
17s 15
.s
2
2s C 5/.s
2
C 2s C 10/
D
A.s 1/ C B
.s 1/
2
C 4
C
C.s C 1/ C D
.s C 1/
2
C 9
where
.A.s 1/ C B/..s C 1/
2
C 9/ C .C.s C 1/ C D/..s 1/
2
C 4/ D 17s 15:
130 Chapter 8
Laplace Transforms
13B C 8C C 4D D 2 .set s D 1/I
18A C 9B C 8D D 32 .set s D 1/I
10A C 10B C 5C C 5D D 15 .set s D 0/I
A C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1, B D 2, C D 1, D D 4. Therefore,
17s 15
.s
2
2s C 5/.s
2
C 2s C 10/
D
.s 1/ C 2
.s 1/
2
C 4
.s C 1/ C 4
.s C 1/
2
C 9
$ e
t
.cos 2t C sin 2t/ e
t
cos 3t C
4
3
sin 3t
:
(b)
8s C 56
.s
2
6s C 13/.s
2
C 2s C 5/
D
A.s 3/ C B
.s 3/
2
C 4
C
C.s C 1/ C D
.s C 1/
2
C 4
where
.A.s 3/ C B/..s C 1/
2
C 4/ C .C.s C1/ C D/..s 3/
2
C 4/ D 8s C 56:
20B C 16C C 4D D 80 .set s D 3/I
16A C 4B C 20D D 48 .set s D 1/I
15A C 5B C 13C C 13D D 56 .set s D 0/I
A C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1, B D 3, C D 1, D D 1. Therefore,
8s C 56
.s
2
6s C 13/.s
2
C 2s C 5/
D
.s 3/ C 3
.s 3/
2
C 4
C
.s C 1/ C 1
.s C 1/
2
C4
$ e
3t
cos 2t C
3
2
sin 2t
C e
t
cos 2t C
1
2
sin 2t
:
(c)
s C9
.s
2
C 4s C 5/.s
2
4s C 13/
D
A.s C 2/ C B
.s C2/
2
C 1
C
C.s 2/ C D
.s 2/
2
C 9
where
.A.s C 2/ C B/..s 2/
2
C 9/ C .C.s 2/ C D/..s C 2/
2
C 1/ D s C 9:
25B 4C C D D 7 .set s D 2/I
36A C 9B C 17D D 11 .set s D 2/I
26A C 13B 10C C 5D D 9 .set s D 0/I
A C C D 0 .equate coefficient s of s
3
/:
Solving this system yields A D 1=8, B D 1=4, C D 1=8, D D 1=4. Therefore,
s C 9
.s
2
C4s C 5/.s
2
4s C 13/
D D
1
8
.s C 2/ C 2
.s C 2/
2
C 1
.s 2/ 2
.s 2/
2
C 3
$ e
2t
1
8
cos t C
1
4
sin t
e
2t
1
8
cos 3t
1
12
sin 3t
:
(d)
3s 2
.s
2
4s C 5/.s
2
6s C 13/
D
A.s 2/ C B
.s 2/
2
C 1
C
C.s 3/ C D
.s 3/
2
C 4
where
.A.s 2/ C B/..s 3/
2
C 4/ C .C.s 3/ C D/..s 2/
2
C 1/ D 3s 2:
Section 8.2
The Inverse Laplace Transform
131
5B C C D D 4 .set s D 2/I
4A C4B C 2D D 7 .set s D 3/I
26A C 13B 15C C 5D D 2 .set s D 0/I
A C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1, B D 1=2, C D 1, D D 1=2. Therefore,
3s 2
.s
2
4s C 5/.s
2
6s C 13/
D D
1
2
2.s 2/ C 1
.s 2/
2
C1
2.s 3/ 1
.s 3/
2
C 4
$ e
2t
cos t C
1
2
sin t
e
3t
cos 2t
1
4
sin 2t
:
(e)
3s 1
.s
2
2s C2/.s
2
C 2s C 5/
D
A.s 1/ C B
.s 1/
2
C 1
C
C.s C 1/ C D
.s C 1/
2
C 4
where
.A.s 1/ C B/..s C 1/
2
C 4/ C.C.s C 1/ C D/..s 1/
2
C 1/ D 3s 1:
8B C 2C C D D 2 .set s D 1/I
8A C 4B C 5D D 4 .set s D 1/I
5A C 5B C 2C C 2D D 1 .set s D 0/I
A C 5B C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1=5, B D 2=5, C D 1=5, D D 4=5. Therefore,
3s 1
.s
2
2s C 2/.s
2
C 2s C 5/
D
1
5
.s 1/ C 2
.s 1/
2
C 1
.s C 1/ C 4
.s C 1/
2
C 4
:
$ e
t
1
5
cos t C
2
5
sin t
e
t
1
5
cos 2t C
2
5
sin 2t
:
(f)
20s C 40
.4s
2
4s C 5/.4s
2
C 4s C 5/
D Œ
A.s 1=2/ C B
.s 1=2/
2
C 1
C
C.s C 1=2/ C D
.s C 1=2/
2
C 1
where
.A.s 1=2/ C B/..s C 1=2/
2
C 1/ C .C.s C 1=2/ C D/..s 1=2/
2
C 1/ D
5s C 10
4
:
2B C C C D D 25=8 .set s D 1=2/I
A C B C 2D D 15=8 .set s D 1=2/I
5A C 10B C 5C C 10D D 20 .set s D 0/I
A CC D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1, B D 9=8, C D 1, D D 1=8. Therefore,
20s C 40
.4s
2
4s C 5/.4s
2
C 4s C 5/
D
1
8
8.s 1=2/ C9
.s 1=2/
2
C 1
C
8.s C 1=2/
.s C 1=2/
2
C 1
$ e
t=2
cos t C
9
8
sin t
Ce
t=2
cos t
1
8
sin t
:
8.2.8. ( a)
2s C 1
.s
2
C 1/.s 1/.s 3/
D
A
s 1
C
B
s 3
C
C s C D
s
2
C1
132 Chapter 8
Laplace Transforms
where
.A.s 3/ C B.s 1//.s
2
C 1/ C .C s C D/.s 1/.s 3/ D 2s C1:
4A D 3 .set s D 1/I
20B D 7 .set s D 3/I
3A B C 3D D 1 .set s D 0/I
A CB C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 3=4, B D 7=20, C D 2=5, D D 3=10. Therefore,
2s C 1
.s
2
C 1/.s 1/.s 3/
D
3
4
1
s 1
C
7
20
1
s 3
C
2
5
s
s
2
C 1
3
10
1
s
2
C 1
$
3
4
e
t
C
7
20
e
3t
C
2
5
cos t
3
10
sin t:
(b)
s C 2
.s
2
C 2s C 2/.s
2
1/
D
A
s 1
C
B
s C 1
C
C.s C 1/ CD
.s C 1/
2
C 1
where
.A.s C 1/ C B.s 1//..s C 1/
2
C 1/ C .C.s C 1/ C D/.s
2
1/ D s C 2:
10A D 3 .set s D 1/I
2B D 1 .set s D 1/I
2A 2B C D D 2 .set s D 0/I
A C B C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 3=10, B D 1=2, C D 1=5, D D 3=5. Therefore,
s C 2
.s
2
C 2s C 2/.s
2
1/
D
3
10
1
s 1
1
2
1
s C 1
C
1
5
s C 1
.s C 1/
2
C 1
3
5
1
.s C 1/
2
C 1
$
3
10
e
t
1
2
e
t
C
1
5
e
t
cos te
t
sin t:
(c)
2s 1
.s
2
2s C 2/.s C 1/.s 2/
D
A
s 2
C
B
s C 1
C
C.s 1/ C D
.s 1/
2
C 1
where
.A.s C 1/ CB.s 2//..s 1/
2
C 1/ C .C.s 1/ CD/.s 2/.s C 1/ D 2s 1:
6A D 3 .set s D 2/I
15B D 3 .set s D 1/I
2A 4B C 2C 2D D 1 .set s D 0/I
A C B C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1=2, B D 1=5, C D 7=10, D D 1=10. Therefore,
2s 1
.s
2
2s C 2/.s C 1/.s 2/
D D
1
2
1
s 2
C
1
5
1
s C 1
7
10
s 1
.s 1/
2
C 1
1
10
1
.s 1/
2
C 1
$
1
2
e
2t
C
1
5
e
t
7
10
e
t
cos t
1
10
e
t
sin t:
(d)
s 6
.s
2
1/.s
2
C 4/
D
A
s 1
C
B
s C 1
C
C s C D
s
2
C 4
Section 8.2
The Inverse Laplace Transform
133
where
.A.s C 1/ C B.s 1//.s
2
C 4/ C .C s C D/.s
2
1/ D s 6:
10A D 5 .set s D 1/I
10B D 7 .set s D 1/I
4A 4B D D 6 .set s D 0/I
A C B C C D 0 .equate coefficient s of s
3
/:
Solving this system yields A D 1=2, B D 7=10, C D 1=5, D D 6=5. Therefore,
s 6
.s
2
1/.s
2
C 4/
D D
1
2
1
s 1
C
7
10
1
s C 1
1
5
s
s
2
C 4
C
3
5
C
1
s
2
C 4
$
1
2
e
t
C
7
10
e
t
1
5
cos 2t C
3
5
sin 2t:
(e)
2s 3
s.s 2/.s
2
2s C 5/
D
A
s
C
B
s 2
C
C.s 1/ C D
.s 1/
2
C 4
where
.A.s 2/ C Bs/..s 1/
2
C 4/ C .C.s 1/ CD/s.s 2/ D 2s 3:
10A D 3 .set s D 0/I
10B D 1 .set s D 2/I
4A C 4B D D 1 .set s D 1/I
A CB C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 3=10, B D 1=10, C D 2=5, D D 1=5. Therefore,
2s 3
s.s 2/.s
2
2s C 5/
D D
3
10s
C
1
10
1
s 2
2
5
s 1
.s 1/
2
C 4
C
1
5
1
.s 1/
2
C 4
$
3
10
C
1
10
e
2t
2
5
e
t
cos 2t C
1
10
e
t
sin 2t:
(f)
5s 15
.s
2
4s C 13/.s 2/.s 1/
D
A
s 1
C
B
s 2
C
C.s 2/ C D
.s 2/
2
C 9
where
.A.s 2/ C B.s 1//..s 2/
2
C 9/ C .C.s 2/ C D/.s 1/.s 2/ D 5s 15:
10A D 10 .set s D 1/I
9B D 5 .set s D 2/I
26A 13B 4C C 2D D 15 .set s D 0/I
A C B C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1, B D 5=9, C D 4=9, D D 1. Therefore,
5s 15
.s
2
4s C 13/.s 2/.s 1/
D D
1
s 1
5
9
1
s 2
4
9
s 2
.s 2/
2
C 9
C
1
.s 2/
2
C 9
$ e
t
5
9
e
2t
4
9
e
2t
cos 3t C
1
3
e
2t
sin 3t:
134 Chapter 8
Laplace Transforms
8.2.10. (a) Let i D 1. (The proo f for i D 2; : : : ; n) is simi lar. Multiplying th e given equati on throu gh by
s s
1
yields
P.s/
.s s
2
/ .s s
n
/
D A
1
C .s s
1
/
A
2
s s
2
C C
A
n
s s
n
;
and setting s D s
1
yields A
1
D
P.s
1
/
.s
1
s
2
/ .s
2
s
n
/
.
(b) From calculus we know that F has a partial fractio n expansion of the form
P.s/
.s s
1
/Q
1
.s/
D
A
s s
1
C G.s/ where G is continuous at s
1
. Mul tiplying through by s s
1
shows that
P.s/
Q
1
.s/
D A C
.s s
1
/G.s/. Now set s D s
1
to obtain A D
P.s
1
/
Q.s
1
/
.
(c) The result in (b) is generalization of the result in (a), since it shows that if s
1
is a simple zero of the
denominator of the rational functio n, then Heaviside’s method can be used to determine the coefficient of
1=.s s
1
/ in the partial fraction expansion even if some of the other zeros of the denominator are repeated
or complex.
8.3 SOLUTION OF INIT IAL VALUE PROBLEMS
8.3.2.
.s
2
s 6/Y.s/ D
2
s
Cs 1 D
2 C s.s 1/
s
:
Since .s
2
s 6/ D .s 3/.s C 2/,
Y.s/ D
2 C s.s 1/
s.s 3/.s C 2/
D
1
3s
C
8
15
1
s 3
C
4
5
1
s C 2
and y D
1
3
C
8
15
e
3t
C
4
5
e
2t
.
8.3.4.
.s
2
4/Y.s/ D
2
s 3
C .1 C s/ D
2 C .s 1/.s 3/
s 3
:
Since s
2
4 D .s 2/.s C 2/,
Y.s/ D
2 C .s 1/.s 3/
.s 2/.s C 2/.s 3/
D
1
4
1
s 2
C
17
20
1
s C 2
C
2
5
1
s 3
and y D
1
4
e
2t
C
17
20
e
2t
C
2
5
e
3t
.
8.3.6.
.s
2
C 3s C 2/Y.s/ D
6
s 1
C .1 C s/ C 3 D
6 C .s 1/.s C 2/
s 1
:
Since s
2
C 3s C 2 D .s C 2/.s C 1/,
Y.s/ D
6 C .s 1/.s C 2/
.s 1/.s C 2/.s C 1/
D
1
s 1
C
2
s C 2
2
s C 1
and y D e
t
C2e
2t
2e
t
.
Section 8.3
Solution of Initial Value Problems
135
8.3.8.
.s
2
3s C 2/Y.s/ D
2
s 3
C .1 C s/ 3 D
2 C .s 3/.s 4/
s 3
:
Since s
2
3s C 2 D .s 1/.s 2/,
Y.s/ D
2 C .s 3/.s 4/
.s 1/.s 2/.s 3/
D
4
s 1
4
s 2
C
1
s 3
and y D 4e
t
4e
2t
C e
3t
.
8.3.10.
.s
2
3s C 2/Y.s/ D
1
s 3
C .4 s/ C 3 D
1 .s 3/.s C 1/
s 3
:
Since s
2
3s C 2 D .s 1/.s 2/,
Y.s/ D
1 .s 3/.s C1/
.s 1/.s 2/.s 3/
D
5
2
1
s 1
4
s 2
C
1
2
1
s 3
and y D
5
2
e
t
4e
2t
C
1
2
e
3t
.
8.3.12.
.s
2
C s 2/Y.s/ D
4
s
C .3 C 2s/ C 2 D
4 C s.5 C 2s/
s
:
Since .s
2
C s 2/ D .s C 2/.s 1/,
Y.s/ D
4 C s.5 C 2s/
s.s C2/.s 1/
D
2
s
1
s C 2
C
1
s 1
;
and y D 2 e
2t
C e
t
.
8.3.14.
.s
2
s 6/Y.s/ D
2
s
Cs 1 D
2 C s.s 1/
s
:
Since s
2
s 6 D .s 3/.s C 2/,
Y.s/ D
2 C s.s 1/
s.s 3/.s C 2/
D
1
3s
C
8
15
1
s 3
C
4
5
1
s C 2
and y D
1
3
C
8
15
e
3t
C
4
5
e
2t
.
8.3.16.
.s
2
1/Y.s/ D
1
s
C s D
1 C s
2
s
:
Since s
2
1 D .s 1/.s C 1/,
Y.s/ D
1 C s
2
s.s 1/.s C 1/
D
1
s
C
1
s 1
C
1
s C 1
and y D 1 C e
t
Ce
t
.
136 Chapter 8
Laplace Transforms
8.3.18.
.s
2
C s/Y.s/ D
2
s 3
C .4 s/ 1 D
2 .s 3/
2
s 3
:
Since s
2
C s D s.s C 1/,
Y.s/ D
2 .s 3/
2
s.s C 1/.s 3/
D
7
3s
7
2
1
s C 1
C
1
6
1
s 3
and y D
7
3
7
2
e
t
C
1
6
e
3t
.
8.3.20.
.s
2
C 1/Y.s/ D
1
s
2
C 2; so Y .s/ D
1
.s
2
C 1/s
2
C
2
s
2
C 1
:
Substituting x D s
2
into
1
.x C 1/x
D
1
x C 1
1
x
yields
1
.s
2
C 1/s
2
D
1
s
2
1
s
2
C 1
;
so Y .s/ D
1
s
2
C
1
s
2
C 1
and y D t C sin t.
8.3.22.
.s
2
C 5s C 6/Y.s/ D
2
s C 1
C .3 C s/ C 5 D
2 C .s C 1/.s C 8/
s C 1
:
Since s
2
C 5s C 6 D .s C 2/.s C 3/,
Y.s/ D
2 C .s C 1/.s C 8/
.s C 1/.s C 2/.s C 3/
D
1
s C 1
C
4
s C 2
4
s C 3
and y D e
t
C 4e
2t
4e
3t
.
8.3.24.
.s
2
2s 3/Y.s/ D
10s
s
2
C 1
C .7 C 2s/ 4 D
10s
s
2
C 1
C.2s C 3/:
Since s
2
2s 3 D .s 3/.s C 1/,
Y.s/ D
10s
.s 3/.s C 1/.s
2
C 1/
C
2s C 3
.s 3/.s C 1/
: .A/
2s C 3
.s 3/.s C 1/
D
9
4
1
s 3
1
4
1
s C 1
$
9
4
e
3t
1
4
e
t
: .B/
10s
.s 3/.s C 1/.s
2
C 1/
D
A
s 3
C
B
s C 1
C
C s C D
s
2
C 1
where
.A.s C 1/ C B.s 3//.s
2
C 1/ C .C s C D/.s 3/.s C 1/ D 10s:
40A D 30 .set s D 3/I
8B D 10 .set s D 1/I
A 3B 3D D 0 .set s D 0/I
A C B CC D 0 .equate coefficient s of s
3
/:
Section 8.3
Solution of Initial Value Problems
137
Solving this system yields A D 3=4, B D 5=4, C D 2, D D 1. Therefore,
10s
.s 3/.s C 1/.s
2
C1/
D
3
4
1
s 3
C
5
4
1
s C 1
2s C1
s
2
C 1
$
3
4
e
3t
C
5
4
e
t
2 cos t sin t:
From this, (A), and (B), y D sin t 2 cos t C 3e
3t
C e
t
.
8.3.26.
.s
2
C 4/Y.s/ D
16
s
2
C 4
C
9s
s
2
C 1
C s; so
Y.s/ D
16
.s
2
C4/
2
C
9s
.s
2
C 4/.s
2
C 1/
C
s
s
2
C 4
:
From the table of Laplace transforms,
t cos 2t $
s
2
4
.s
2
C 4/
2
D
s
2
C 4
.s
2
C 4/
2
8
.s
2
C 4/
2
D
1
s
2
C 4
8
.s
2
C 4/
2
:
Therefore,
8
.s
2
C 4/
2
D
1
s
2
C 4
L.t cos 2t/; so
16
.s
2
C 4/
2
$ sin 2t 2t cos 2t: .A/
Substituting x D s
2
into
9
.x C 4/.x C 1/
D
3
x C 1
3
x C 4
and multiplying by s yields
9s
.s
2
C 4/.s
2
C 1/
D
3s
s
2
C 1
3s
s
2
C 4
$ 3 cos t 3 cos 2t: .B/
Finally,
s
s
2
C 4
$ cos 2t: .C/
Adding (A), (B ), and (C) yields y D .2t C 2/ cos 2t C sin 2t C 3 cos t.
28.
.s
2
C 2s C 2/Y.s/ D
2
s
2
C.7 C 2s/ C 4:
Since .s
2
C 2s C 2/ D .s C 1/
2
C 1,
Y.s/ D
2
s
2
..s C 1/
2
C 1/
C
2s 3
.s C 1/
2
C 1
: .A/
2s 3
.s C 1/
2
C 1
D
2.s C 1/ 5
.s C 1/
2
C 1
$ e
t
.2 cos t 5 sin t/: .B/
2
s
2
..s C 1/
2
C 1/
D
A
s
C
B
s
2
C
C.s C 1/ C D
.s C 1/
2
C 1
;
138 Chapter 8
Laplace Transforms
where .As C B/
.s C 1/
2
C 1
C s
2
.C.s C 1/ C D/ D 2.
2B D 2 .set s D 0/I
A C B C D D 2 .set s D 1/I
A C C D 0 .equate coefficients of s
3
/I
2A C B C C C D D 0 .equate coefficients of s
2
/:
Solving this system yields A D 1, B D 1, C D 1, D D 0. Therefore,
2
s
2
..s C 1/
2
C 1/
D
1
s
C
1
s
2
C
.s C 1/
.s C1/
2
C 1
$ 1 C t C e
t
cos t:
From this, (A), and (B), y D 1 C t C e
t
.cos t 5 sin t/.
8.3.30. .s
2
C 4s C 5/Y.s/ D
.s C 1/ C 3
.s C 1/
2
C 1
C 4. Since .s
2
C 4s C 5/ D .s C 2/
2
C 1,
Y.s/ D
s C 4
..s C 1/
2
C1/..s C 2/
2
C 1/
C
4
.s C2/
2
C 1
: .A/
4
.s C 2/
2
C 1
$ 4e
2t
sin t: .B/
s C 4
..s C 1/
2
C 1/..s C 2/
2
C 1/
D
A.s C 1/ C B
.s C 1/
2
C 1
C
C.s C 2/ C D
.s C 2/
2
C 1
;
where .A.s C 1/ C B/
.s C 2/
2
C 1
C .C.s C 2/ C D/
.s C 1/
2
C 1
D 4 C s.
5A C 5B C 4C C 2D D 4 .set s D 0/I
2B C C C D D 3 .set s D 1/I
A C B C 2D D 2 .set s D 2/I
A C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1, B D 1, C D 1, D D 0. Therefore,
s C4
..s C 1/
2
C 1/..s C 2/
2
C 1/
D
.s C1/ C 1
.s C 1/
2
C 1
C
s C2
.s C 2/
2
C1
; $ e
t
.cos t C sin t/ C e
2t
cos t:
From this, (A), and (B), y D e
t
.cos t C sin t/ C e
2t
.cos t C 4 sin t/.
8.3.32.
.2s
2
3s 2/Y.s/ D
4
s 1
C 2.2 C s/ 3 D
4 C .2s 7/.s 1/
s 1
Since 2s
2
3s 2 D .s 2/.2s C 1/,
Y.s/ D
4 C .2s 7/.s 1/
2.s 2/.s 1/.s C 1=2/
D
1
5
1
s 2
4
3
1
s 1
C
32
15
1
s C 1=2
and y D
1
5
e
2t
4
3
e
t
C
32
15
e
t=2
.
8.3.34.
.2s
2
C 2s C 1/Y.s/ D
2
s
2
C 2.1 C s/ C 2 D
2
s
2
C 2s:
Section 8.3
Solution of Initial Value Problems
139
Since 2s
2
C 2s C 1 D 2..s C 1=2/
2
C 1=4/,
Y.s/ D
1
s
2
..s C 1=2/
2
C 1=4/
C
s
..s C 1=2/
2
C1=4/
: .A/
s
..s C 1=2/
2
C 1=4/
$ e
t=2
.cos.t=2/ sin.t=2//: .B/
1
s
2
..s C 1=2/
2
C 1=4/
D
A
s
C
B
s
2
C
C.s C 1=2/ CD
..s C 1=2/
2
C 1=4/
where
.As C B/..s C 1=2/
2
C 1=4/ C .C.s C 1=2/ CD/s
2
D 1:
B D 2 .set s D 0/I
A C 2B C 2D D 8 .set s D 1=2/I
5A C10B C 2C C 2D D 8 .set s D 1=2/I
A C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 4, B D 2, C D 4, D D 0. Therefore,
1
s
2
..s C 1=2/
2
C 1=4/
D
4
s
C
2
s
2
C
4.s C 1=2/
.s C 1=2/
2
C 1=4
$ 4 C 2t C 4e
t=2
cos.t=2/:
This, (A), and (B) imply that y D e
t=2
.5 cos.t=2/ sin.t=2// C 2t 4.
8.3.36.
.4s
2
C 4s C 1/Y.s/ D
3 C s
s
2
C 1
C 4.1 C 2s/ C 8 D
3 C s
s
2
C1
C 4.1 C 2s/ C 8s C 4:
Since 4s
2
C 4s C 1 D 4.s C 1=2/
2
,
Y.s/ D
3 C s
4.s C 1=2/
2
.s
2
C 1/
C
2
s C 1=2
: .A/
3 C s
4.s C 1=2/
2
.s
2
C 1/
D
A
s C 1=2
C
B
.s C1=2/
2
C
C s C D
s
2
C 1
where
.A.s C 1=2/ C B/.s
2
C 1/ C .C s C D/.s C 1=2/
2
D
3 C s
4
:
10B D 5 .set s D 1=2/I
2A C 4B C D D 3 .set s D 0/I
12A C 8B C 9C C 9D D 4 .set s D 1/I
A C C D 0 .equate coefficients of s
3
/:
Solving this system yields A D 3=5, B D 1=2, C D 3=5, D D 1=5. Therefore,
3 C s
4.s C 1=2/
2
.s
2
C 1/
D
3
5
1
s C 1=2
C
1
2
1
.s C 1=2/
2
1
5
3s C 1
s
2
C 1
:
$
3
5
e
t=2
C
1
2
te
t=2
1
5
.3 cos t C sin t/:
140 Chapter 8
Laplace Transforms
Since
2
s C 1=2
$ 2e
t=2
, this and (A) imply that y D
e
t=2
10
.5t C 26/
1
5
.3 cos t C sin t/.
8.3.38. Transformin g the initial value problem
ay
00
C by
0
C cy D 0; y.0/ D 1; y
0
.0/ D 0
yields .as
2
Cbs Cc/Y.s/ D as Cb, so Y.s/ D
as C b
as
2
C bs C c
. Therefore, y
1
D L
1
as C b
as
2
C bs C c
satisfies the initial conditions y
1
.0/ D 1, y
0
1
.0/ D 0.
Transforming the initial value problem
ay
00
C by
0
C cy D 0; y.0/ D 0; y
0
.0/ D 1
yields .as
2
C bs C c/Y.s/ D a, so Y.s/ D
a
as
2
C bs C c
. Therefore, y
2
D L
1
a
as
2
C bs C c
satisfies the initial conditions y
1
.0/ D 0, y
0
1
.0/ D 1.
8.4 THE UNIT STEP FUNCTION
8.4.2.
L.f / D
Z
1
0
e
st
f .t/ dt D
Z
1
0
e
st
t dt C
Z
1
1
e
st
dt: .A/
To relate the first term to a Laplace transform we add and su btract
R
1
1
e
st
t dt in (A) to obtain
L.f / D
Z
1
0
e
st
t dt C
Z
1
1
e
st
.1 t/ dt D L.t/
Z
1
1
e
st
.t 1/ dt: .B/
Letting t D x C 1 in the last integral yields
Z
1
1
e
st
.t 1/ dt D
Z
1
0
e
s.xC1/
x dx D e
s
L.t/:
This and (B) imply that L.f / D .1 e
s
/L.t / D
1 e
s
s
2
.
Alternatively, f .t/ D t u.t 1/.t 1/ $ .1 e
s
/L.t/ D
1 e
s
s
2
.
8.4.4.
L.f / D
Z
1
0
e
st
f .t/ dt D
Z
1
0
e
st
dt C
Z
1
1
e
st
.t C 2/ dt: .A/
To relate the first term to a Laplace transform we add and su btract
R
1
1
e
st
dt i n (A) to obtain
L.f / D
Z
1
0
e
st
dt C
Z
1
1
e
st
.t C 1/ dt D L.t/ C
Z
1
1
e
st
.t C 1/ dt: .B/
Letting t D x C 1 in the last integral yields
Z
1
1
e
st
.t C 1/ dt D
Z
1
0
e
s.xC1/
.x C2/ dx D e
s
L.t C 2/:
This and (B) imply that L.f / D L.1/ Ce
s
L.t C 2/ D
1
s
C e
s
1
s
2
C
2
s
.
Section 8.4
The Unit Step Function
141
Alternatively,
f .t/ D 1 Cu.t 1/.t C 1/ $ L.1/ C e
s
L.t C 2/ D
1
s
C e
s
1
s
2
C
2
s
.
8.4.6.
L.f / D
Z
1
0
e
st
f .t/ dt D
Z
1
0
e
st
t
2
D L.t
2
/
Z
1
1
t
2
dt: .A/
Letting t D x C 1 in the last integral yields
Z
1
1
e
st
t
2
dt D
Z
1
0
e
s.xC1/
.t
2
C 2t C 1/ dx D e
s
L.t
2
C 2t C 1/:
This and (A) imply that
L.f / D L.t
2
/ C e
s
L.t
2
C 2t C 1/ D
2
s
3
e
s
2
s
3
C
2
s
2
C
1
s
:
Alternatively,
f .t/ D t
2
.1 u.t 1// $ L.t
2
/ C e
s
L.t
2
C 2t C 1/ D
2
s
3
e
s
2
s
3
C
2
s
2
C
1
s
8.4.8. f .t/ D t
2
C 2 C u.t 1/.t t
2
2/. Since t
2
C 2 $
2
s
3
C
2
s
and
L
u.t 1/.t t
2
2/
D e
s
L
.t C 1/ .t C 1/
2
2
D e
s
L.t
2
C t C 2/ D e
s
2
s
3
C
1
s
2
C
2
s
;
it follows that F .s/ D
2
s
3
C
2
s
e
s
2
s
3
C
1
s
2
C
2
s
.
8.4.10. f .t/ D e
t
C u.t 1/.e
2t
e
t
/ $ L.e
t
/ C e
s
L.e
2.t C1/
/ e
s
L.e
t1
/ D L.e
t
/ C
e
.sC2/
L.e
2t
/ e
.sC1/
L.e
t
/ D
1 e
.sC1/
s C 1
C
e
.sC2/
s C 2
.
8.4.12. f .t/ D Œu.t 1/ u.t 2/ t $ e
s
L.t C1/ e
2s
L.t C 2/
D e
s
1
s
2
C
1
s
e
2s
1
s
2
C
2
s
.
8.4.14.
f .t/ D t 2u.t 1/.t 1/ C u.t 2/.t C 4/ $
1
s
2
2e
s
L.t/ C e
2s
L.t C 6/
D
1
s
2
2e
s
s
2
C e
2s
1
s
2
C
6
s
:
8.4.16. f .t/ D 2 2u.t 1/t C u.t 3/.5t 2/ $ L.2/ 2e
s
L.t C 1/ C e
3s
L.5t C 13/ D
2
s
e
s
2
s
2
C
2
s
C e
3s
5
s
2
C
13
s
.
142 Chapter 8
Laplace Transforms
8.4.18. f .t/ D .t C 1/
2
C u.t 1/
.t C 2/
2
.t C 1/
2
D t
2
C 2t C 1 C u.t 1/.2t C 3/ $
L.t
2
C2t C 1/ C e
s
L.2t C 5/ D
2
s
3
C
2
s
2
C
1
s
C e
s
2
s
2
C
5
s
.
8.4.20.
1
s.s C 1/
D
1
s
1
s C 1
$ 1e
t
) e
s
1
s.s C 1/
$ u.t1/
1 e
.t1/
D
(
0; 0 t < 1;
1 e
.t1/
; t 1:
8.4.22.
3
s
1
s
2
$ 3 t ) e
s
3
s
1
s
2
$ u.t 1/ .3 .t 1// D u.t 1/.4 t/I
1
s
C
1
s
2
$ 1 C t ) e
3s
1
s
C
1
s
2
$ u.t 3/ .1 C .t 3// D u.t 3/.t 2/I
therefore
h.t/ D 2 C t C u.t 1/.4 t/ C u.t 3/.t 2/ D
8
ˆ
ˆ
<
ˆ
ˆ
:
2 C t; 0 t < 1;
6; 1 t < 3;
t C 4; t 3:
8.4.24.
1 2s
s
2
C 4s C 5
D
5 2.s C 2/
.s C 2/
2
C 1
$ e
2t
.5 sin t 2 cos t/I
therefore,
h.t/ D u.t /e
2.t /
.5 sin.t / 2 cos.t //
D u.t /e
2.t /
.2 cos t 5 sin t/
D
(
0; 0 t < ;
e
2.t /
.2 cos t 5 sin t/; t :
:
8.4.26. Denote F.s/ D
3.s 3/
.s C 1/.s 2/
s C1
.s 1/.s 2/
. Since
3.s 3/
.s C 1/.s 2/
D
4
s C 1
1
s 2
and
s C 1
.s 1/.s 2/
D
3
s 2
2
s 1
, F.s/ D
4
s C 1
4
s 2
C
2
s 1
$ 4e
t
4e
2t
C2e
t
. Therefore,e
2s
F .s/ $
u.t 2/
4e
.t2/
4e
2.t 2/
C 2e
.t2/
D
(
0; 0 t < 2;
4e
.t2/
4e
2.t 2/
C 2e
.t2/
; t 2:
8.4.28.
3
s
1
s
3
$ 3
t
2
2
) e
2s
3
s
1
s
3
$ u.t 2/
3
.t 2/
2
2
D u.t 2/
t
2
2
C 2t C 1
I
1
s
2
$ t )
e
4s
s
2
$ u.t 4/.t 4/I
Section 8.5
Constant Coeefficient Equations with Piecewise Continuous Forcing Functions
143
therefore
h.t/ D 1 t
2
C u.t 2/
t
2
2
C 2t C 1
C u.t 4/.t 4/
D
8
ˆ
ˆ
ˆ
ˆ
ˆ
<
ˆ
ˆ
ˆ
ˆ
ˆ
:
1 t
2
; 0 t < 2
3t
2
2
C 2t C 2; 2 t < 4;
3t
2
2
C3t 2; t 4:
8.4.30. Let T be an arbitrary p ositive number. Since lim
m!1
t
m
D 1, only finitely many members of
ft
m
g are in Œ0; T . Since f
m
is continuous on Œt
m
; 1/ for each m, f is piecewise continuous on Œ0; T .
If t
M
t < t
M C1
, then u.t t
m
/ D 1 if m M , while u.t t
m
/ D 0 if m > M . Therefore,
f .t/ D f
0
.t/ C
M
X
mD1
.f
m
.t/ f
m1
.t// D f
M
.t/
8.4.32. Since
1
X
mD0
e
Km
converges if > 0,
1
X
mD0
e
t
m
converges if > 0, by the comparison test.
Therefore,(C) of Exercise 8.3.31 holds if s > s
0
C if is any p ositive number. This implies th at it holds
if s > s
0
.
8.4.34. Let t
m
D m and f
m
.t/ D .1/
m
, m D 0; 1; 2; : : : . Then f
m
.t/ f
m1
.t/ D .1/
m
2, so
f .t/ D 1 C 2
1
X
mD1
.1/
m
u.t m/ and F.s/ D
1
s
1 C 2
1
X
mD1
.1/
m
e
ms
!
Substituting x D e
s
in the
identity
1
X
mD1
.1/
m
x
m
D
x
1 C x
(jxj < 1) yields F.s/ D
1
s
1
2e
s
1 C e
s
D
1
s
1 e
s
1 C e
s
.
8.4.36. Let t
m
D m and f
m
.t/ D .1/
m
m, m D 0; 1; 2; : : : . Then f
m
.t/ f
m1
.t/ D .1/
m
.2m 1/,
so f .t/ D
1
X
mD1
.1/
m
.2m 1/u.t m/and F .s/ D
1
s
1
X
mD1
.1/
m
.2m 1/e
ms
. Substituting x D e
s
in the identities
1
X
mD1
.1/
m
x
m
D
x
1 C x
and
1
X
mD1
.1/
m
mx
m
D
x
.1 C x/
2
(jxj < 1) yields F .s/ D
1
s
e
s
1 Ce
s
2e
s
.1 C e
s
/
2
D
1
s
.1 e
s
/
.1 C e
s
/
2
.
8.5 CONSTANT COEEFFICIENT EQUATIONS WITH PIECE WISE CONTINUOUS FORCING
FUNCTIONS
8.5.2. y
00
C y D 3 C u.t 4/.2t 8/; y.0/ D 1; y
0
.0/ D 0. Since
L .u.t 4/.2t 8// D e
4s
L .2.t C 4/ 8/ D e
4s
L.2t/ D
2e
4s
s
2
;
.s
2
C 1/Y.s/ D
3
s
C
2e
4s
s
2
C s:
144 Chapter 8
Laplace Transforms
Y.s/ D
3
s.s
2
C 1/
C
2e
4s
s
2
.s
2
C 1/
C
s
s
2
C 1
D 3
1
s
s
s
2
C 1
C 2e
4s
1
s
2
1
s
2
C 1
C
s
s
2
C 1
D
3
s
2s
s
2
C 1
C 2e
4s
1
s
2
1
s
2
C 1
:
Since
1
s
2
1
s
2
C 1
$ t sin t ) e
4s
1
s
2
1
s
2
C 1
$ u.t 4/ .t 4 sin.t 4// ;
y D 3 2 cos t C 2u.t 4/ .t 4 sin.t 4//.
8.5.4. y
00
y D e
2t
C u.t 2/.1 e
2t
/; y.0/ D 3; y
0
.0/ D 1. Since
L.u.t 2/.1 e
2t
// D e
2s
L.1 e
2.t C2/
/ D e
2s
1
s
e
4
s 2
;
.s
2
1/Y.s/ D
1
s 2
C e
2s
1
s
e
4
s 2
C .1 C 3s/:
Therefore,
Y.s/ D
1
.s 1/.s C 1/.s 2/
C
3s 1
.s 1/.s C 1/
Ce
2s
1
s.s 1/.s C 1/
e
4
.s 1/.s C 1/.s 2/
:
1
.s 1/.s C 1/.s 2/
D
1
2
1
s 1
C
1
6
1
s C 1
C
1
3
1
s 2
$
1
2
e
t
C
1
6
e
t
C
1
3
e
2t
I
e
2s
e
4
.s 1/.s C 1/.s 2/
$ u.t 2/
1
2
e
tC2
C
1
6
e
.t6/
C
1
3
e
2t
I
1
s.s 1/.s C 1/
D
1
s
C
1
2
1
s 1
C
1
2
1
s C 1
$ 1 C
1
2
e
t
C
1
2
e
t
I
e
2s
s.s 1/.s C 1/
$ u.t 2/
1 C
1
2
e
t2
C
1
2
e
.t2/
I
3s 1
.s 1/.s C 1/
D
1
s 1
C
2
s C 1
$ e
t
C 2e
t
:
Therefore,
y D
1
2
e
t
C
13
6
e
t
C
1
3
e
2t
C u.t 2/
1 C
1
2
e
t2
C
1
2
e
.t2/
C
1
2
e
tC2
1
6
e
.t6/
1
3
e
2t
:
8.5.6. Note that jsin tj D sin t if 0 t < , while jsin tj D sin t if t < 2 . Rewrite the initial
value prob lem as
y
00
C 4y D sin t 2u.t / sin t C u.t 2/ sin t; y.0/ D 3; y
0
.0/ D 1:
Section 8.5
Constant Coeefficient Equations with Piecewise Continuous Forcing Functions
145
Since
L .u.t / sin t/ D e
s
L.sin.t C // D e
s
L.sin t/
and
L .u.t 2/ sin t/ D e
2s
L.sin.t C 2// D e
2s
L.sin t/;
.s
2
C 4/Y.s/ D
1 C 2e
s
C e
2s
.s
2
C 1/
C 1 3s; so Y .s/ D
1 C 2e
s
C e
2s
.s
2
C 1/.s
2
C 4/
C
1 3s
s
2
C 4
:
1
.s
2
C 1/.s
2
C 4/
D
1
s
2
C 1
1
s
2
C 4
$
1
3
sin t
1
6
sin 2tI
therefore
e
s
.s
2
C 1/.s
2
C 4/
$ u.t /
1
3
sin.t /
1
6
sin 2.t /
D u.t /
1
3
sin t C
1
6
sin 2t
and
e
2s
.s
2
C 1/.s
2
C 4/
$ u.t 2/
1
3
sin.t 2/
1
6
sin 2.t 2/
D u.t 2 /
1
3
sin t
1
6
sin 2t
I
therefore
y D
1
3
sin 2t 3 cos 2t C
1
3
sin t 2u.t /
1
3
sin t C
1
6
sin 2t
C u.t 2/
1
3
sin t
1
6
sin 2t
:
8.5.8. y
00
C 9y D cos t C u.t 3=2/.sin t cos t/; y.0/ D 0; y
0
.0/ D 0. Si nce
L .u.t 3=2/.sin t cos t// D e
3s=2
L .sin.t C 3=2/ cos.t C 3=2//
e
3s=2
L.cos t C sin t/;
.s
2
C9/Y .s/ D
1
s
2
C 1
e
3s=2
s C1
s
2
C 1
; so Y.s/ D
1
.s
2
C 1/.s
2
C 9/
e
3s=2
s C 1
.s
2
C 1/.s
2
C 9/
:
1
.s
2
C 1/.s
2
C 9/
D
1
8
1
s
2
C 1
1
s
2
C 9
$
1
8
sin t
1
3
sin 3t
and
s
.s
2
C 1/.s
2
C 9/
D
1
8
s
s
2
C 1
s
s
2
C 9
$
1
8
.cos t cos 3t/ :
s C 1
.s
2
C 1/.s
2
C 9/
D
s C 1
.s
2
C 1/.s
2
C 9/
D
s C 1
8
s C 1
s
2
C 1
s C 1
s
2
C 9
$
1
8
cos t C sin t cos 3t
1
3
sin 3t
; so
146 Chapter 8
Laplace Transforms
e
3s=2
s C 1
.s
2
C 1/.s
2
C9/
$
u.t 3=2/
8
.cos.t 3=2/ C sin.t 3=2/
cos 3.t 3=2/
1
3
sin 3.t =2/
D
u.t 3=2/
8
sin t cos t C sin 3t
1
3
cos 3t
:
Therefore, y D
1
8
.cos t cos 3t/
1
8
u.t 3=2/
sin t cos t C sin 3t
1
3
cos 3t
.
8.5.10. y
00
Cy D t 2u.t /t; y.0/ D 0; y
0
.0/ D 0. Si nce
L .u.t /t/ D e
s
L .t C / D e
s
1
s
2
C
s
;
.s
2
C 1/Y.s/ D
1
s
2
2e
s
1
s
2
C
s
I
Y.s/ D
1
s
2
.s
2
C 1/
2e
s
1
s
2
.s
2
C 1/
C
s.s
2
C 1/
D
1
s
2
1
s
2
C 1
2e
s
1
s
2
1
s
2
C 1
2e
s
1
s
s
s
2
C 1
:
Since
1
s
2
1
s
2
C 1
$ t si n t ) e
s
1
s
2
1
s
2
C1
$ u.t / .t sin.t // D u.t /.t C sin t /
and
1
s
s
s
2
C 1
$ 1 cos t ) e
s
1
s
s
s
2
C 1
$ u.t / .1 cos.t // D u.t /.1 C cos t/;
y D t sin t 2u.t /.t C sin t C cos t/.
8.5.12. y
00
Cy D t 3u.t 2/t; y.0/ D 1; y
0
.0/ D 2I
L.u.t 2/t/ D e
2s
L.t C 2/ D e
2s
1
s
2
C
2
s
I
.s
2
C 1/Y.s/ D
1 3e
2s
s
2
6e
2s
s
C 2 C sI
Y.s/ D
1 3e
2s
s
2
.s
2
C 1/
6e
2s
s.s
2
C1/
C
2 C s
s
2
C 1
I
1
s
2
.s
2
C1/
D
1
s
2
1
s
2
C1
$ t sin tI
e
2s
s
2
.s
2
C 1/
$ u.t 2 /..t 2 sin.t 2 // D u.t 2/.t 2 sin t/I
Section 8.5
Constant Coeefficient Equations with Piecewise Continuous Forcing Functions
147
1
s.s
2
C 1/
D
1
s
s
s
2
C 1
$ 1 cos tI
e
2s
s.s
2
C 1/
$ u.t 2/.1 cos.t 2// D u.t 2/.1 cos t/I
2 C s
s
2
C 1
$ 2 sin t C cos tI
y D t C sin t C cos t u.t 2/.3t 3 sin t 6 cos t/.
8.5.14. y
00
4y
0
C 3y D 1 C 2u.t 1/; y.0/ D 0; y
0
.0/ D 0;
.s
2
4s C 3/Y.s/ D
1 C 2e
s
s
; Y.s/ D
1 C 2e
s
s.s 1/.s 3/
;
1
s.s 1/.s 3/
D
1
3s
C
1
6
1
s 3
1
2
1
s 1
$
1
3
C
1
6
e
3t
1
2
e
t
;
e
s
s.s 1/.s 3/
$ u.t 1/
1
3
C
1
6
e
3.t1/
1
2
e
t1
;
y D
1
3
1
6
e
3t
C
1
2
e
t
C u.t 1/
2
3
C
1
3
e
3.t1/
e
t1
.
8.5.16. y
00
C2y
0
C y D 4e
t
4u.t 1/e
t
; y.0/ D 0; y
0
.0/ D 0. Since
L
4u.t 1/e
t
D e
s
L
4e
.tC1/
D
4e
sC1
s 1
;
.s
2
C 2s C 1/Y.s/ D
4
s 1
4e
sC1
s 1
; so
Y.s/ D
4
.s 1/.s C 1/
2
4e
sC1
.s 1/.s C 1/
2
:
1
.s 1/.s C 1/
2
D
A
s 1
C
B
s C 1
C
C
.s C1/
2
;
where
A.s C 1/
2
C B.s 1/.s C 1/ C C.s 1/ D 4:
A D 1 .set s D 1/I
C D 2 .set s D 1/I
A C B D 0 .equate coefficients of s
2
/:
Solving this system yields A D 1, B D 1, C D 2. Therefore,
1
.s 1/.s C 1/
2
D
1
s 1
1
s C 1
2
.s C 1/
2
and
y D e
t
e
t
2te
t
eu.t 1/
e
t1
e
.t1/
2.t 1/e
.t1/
D e
t
e
t
2te
t
u.t 1/
e
t
e
.t2/
2.t 1/e
.t2/
:
8.5.18. y
00
4y
0
C 4y D e
2t
2u.t 2/e
2t
; y.0/ D 0; y
0
.0/ D 1. Since
L
u.t 2/e
2t
D e
2s
L
e
2t C4
D
e
2sC4
s 2
;
148 Chapter 8
Laplace Transforms
.s
2
4s C 4/Y.s/ D
1
s 2
2e
2sC4
s 2
1; so
Y.s/ D
1
.s 2/
3
2e
2sC4
.s 2/
3
1
.s 2/
2
:
1
.s 2/
3
$
t
2
e
2t
2
)
e
2sC4
.s 2/
3
$
e
4
2
u.t 2/e
2.t 2/
.t 2/
2
D u.t 2/
.t 2/
2
e
2t
2
I
therefore y D
t
2
e
2t
2
te
2t
u.t 2/.t 2/
2
e
2t
.
8.5.20. y
00
C2y
0
C 2y D 1 C u.t 2 /.t 1/ u.t 3 /.t C 1/; y.0/ D 2; y
0
.0/ D 1;
L.u.t 2/.t 1// D e
2s
L..t C 2 1// D e
2s
1
s
2
C
2 1
s
I
L.u.t 3/.t C 1// D e
3s
L..t C 3 C 1// D e
3s
1
s
2
C
3 C 1
s
I
.s
2
C 2s C 2/Y.s/ D
1
s
C e
2s
1
s
2
C
2 1
s
e
3s
1
s
2
C
3 C 1
s
C .1 C 2s/ C 4:
Let G.s/ D
1
s.s
2
C 2s C 2/
, H.s/ D
1
s.s
2
C 2s C 2/
; then
Y.s/ D Y
1
.s/ C e
2s
Y
2
.s/ e
3s
Y
3
.s/; (A)
where
Y
1
.s/ D G.s/ C
2s C 3
s
2
C 2s C 2
; (B)
Y
2
.s/ D H.s/ C .2 1/G.s/; (C)
Y
3
.s/ D H.s/ C .3 C 1/G.s/: (D)
Let y
i
.t/ D L
1
.Y
i
.s//, .i D 1; 2; 3/. From (A),
y.t/ D y
1
.t/ C u.t 2/y
2
.t 2 / u.t 3/y
3
.t 3/: (E)
Find L
1
.G.s//:
G.s/ D
A
s
C
B.s C 1/ CC
.s C 1/
2
C 1
where A..s C 1/
2
C 1/ C .B.s C 1/ C C /s D 1. Setting s D 0 yields A D 1=2; setting s D 1 yields
A C D 1, so C D 1=2; since A C B D 0 (coefficient of x
2
), B D 1=2. Therefore,
G.s/ D
1
2
1
s
.s C 1/ C 1
.s C 1/
2
C 1/
$
1
2
1
2
e
t
.cos t Csin t/: (F)
Find L
1
.H.s//:
H.s/ D
A
s
C
B
s C 2
C
C.s C 1/ C D
.s C 1/
2
C 1
Section 8.5
Constant Coeefficient Equations with Piecewise Continuous Forcing Functions
149
where .As C B/..s C 1/
2
C 1/ C .C.s C 1/ C D/s
2
D 1.
2B D 1 .set s D 0/I
A C B C D D 1 .set s D 1/I
5A C 5B C 2C C D D 1 .set s D 1/I
A C B D 0 D 0 .equate coefficients of s
3
/:
Solving this system yields A D 1=2, B D 1=2, C D 1=2, D D 0; therefore
H.s/ D
1
2
1
s
1
s
2
s C 1
.s C 1/
2
C 1/
$
1
2
.1 t e
t
cos t/: (G)
Since
2s C 3
s
2
C 2s C 2
D
2.s C 1/ C 1
.s C 1/
2
C 1
$ e
t
.2 cos t C sin t/;
(B) and (F)) imply that
y
1
.t/ D
1
2
e
t
.3 cos t C sin t/ C
1
2
: (H)
From (C), (F)), and (G),
y
2
.t/ D 1 C
t
2
C . 1/e
t
cos t
2 1
2
e
t
sin t;
so
y
2
.t 2/ D
e
.t2/
. 1/ cos t C
2 1
2
sin t
C 1
t
2
: (I)
From (D), (F)), and (G),
y
3
.t/ D
1
2
e
t
.3 cos t C .3 C 1/ sin t C t C 3 /
;
so
y
3
.t 3/ D
1
2
e
.t3/
.3 cos t C .3 C 1/ sin t C t/
: (J)
Now (E), (20), (I), and (J)
y D
1
2
e
t
.3 cos t C sin t/ C
1
2
imply that
u.t 2 /
e
.t2/
. 1/ cos t C
2 1
2
sin t
C 1
t
2
1
2
u.t 3 /
e
.t3/
.3 cos t C .3 C 1/ sin t/ C t
.
8.5.22. (a) f .t/ D
1
X
nD0
u.t n /; F .s/ D
1
s
1
X
nD0
e
ns
; Y.s/ D
1
s.s
2
C 1/
1
X
nD0
e
ns
;
1
s.s
2
C 1/
D
1
s
s
s
2
C 1
$ 1 cos t;
e
ns
s.s
2
C 1/
$ u.t n/.1 cos.t n// D u.t n/.1 .1/
n
cos t/;
y.t/ D
1
X
nD0
u.t n /.1 .1/
n
cos t/. If m t < .mC1/, y.t/ D
m
X
nD0
.1.1/
n
cos t/. Therefore,
y.t/ D
(
2m C 1 cos t; 2m t < .2m C1/ .m D 0; 1; : : : /
2m; .2m 1/ t < 2m .m D 1; 2; : : : /
.
150 Chapter 8
Laplace Transforms
(b) f .t/ D
1
X
nD0
u.t 2n/t ; F .s/ D
1
X
nD0
e
2ns
L.t C 2n s/ D
1
X
nD0
e
2ns
1
s
2
C
2n
s
; Y.s/ D
1
X
nD0
e
2ns
Y
n
.s/, where Y
n
.s/ D
1
s
2
.s
2
C 1/
C
2n
s.s
2
C 1/
D
1
s
2
1
s
2
C 1
C
2n
s
2n
s
2
C 1
$ y
n
.t/ D
t sin t C2n 2n cos t. Since cos.t 2n/ D cos t and sin.t 2n/ D sin t, e
2ns
Y
n
.s/ $ u.t
2n/y
n
.t/ D u.t 2n/.t sin t 2n cos t/; theref ore y.t/ D
1
X
nD0
u.t 2n /.t sin t 2n cos t/.
If 2m t < 2.m C 1/ , then
y.t/ D
m
X
nD0
.t sin t 2n cos t/ D .m C 1/.t sin t m cos t/:
(c) f .t/ D 1C2
1
X
nD1
.1/
n
u.tn/; F .s/ D
1
s
1 C 2
1
X
nD1
.1/
n
e
ns
!
; Y.s/ D
1
s.s
2
C1/
1 C 2
1
X
nD1
.1/
n
e
ns
!
;
1
s.s
2
C 1/
D
1
s
s
s
2
C1
$ 1 cos t;
e
ns
s.s
2
C 1/
$ u.t n/.1 cos.t n // D u.t n/.1
.1/
n
cos t/; y.t/ D 1 cos t C 2
1
X
nD1
.1/
n
u.t n/.1 .1/
n
cos t/. If m t < .m C 1/,
y.t/ D 1 cos t C 2
m
X
nD1
.1/
n
.1 .1/
n
cos t/ D .1/
m
.2m C 1/ cos t:
(d) f .t/ D
1
X
nD0
u.t n/; F .s/ D
1
s
1
X
nD0
e
ns
; Y .s/ D
1
s.s
2
1/
1
X
nD0
e
ns
;
1
s.s
2
1/
D
1
2
1
s 1
C
1
2
1
s C 1
1
s
$
1
2
.e
t
Ce
t
2/;
e
ns
s.s
2
1/
$
u.t n/
2
e
t
C e
t
2
; y.t/ D
1
2
1
X
nD0
u.tn/
e
tn
C e
.tn/
2
.
If m t < .m C1/,
y.t/ D
1
2
m
X
nD0
e
tn
C e
.tn/
2
D
1
2
.e
tm
C e
t
/
m
X
nD0
e
n
m 1
D
1 e
mC1
2.1 e/
.e
tm
C e
t
/ m 1:
(e) f .t/ D .sin tC2 cos t/
1
X
nD0
u.t2n/; F.s/ D
1 C 2s
s
2
C 1
1
X
nD0
e
2ns
; Y.s/ D
1 C 2s
.s
2
C 1/.s
2
C 2s C 2/
1
X
nD0
e
2ns
;
1 C 2s
.s
2
C 1/.s
2
C 2s C 2/
D
As C B
s
2
C 1
C
C.s C 1/ C D
.s C 1/
2
C 1
where
.As C B/..s C 1/
2
C 1/ C .C.s C 1/ C D/.s
2
C 1/ D 1 C 2s:
2B C C C D D 1 .set s D 0/I
A C B C 2D D 1 .set s D 1/I
5A C 5B C 4C C 2D D 3 .set s D 1/I
A C C D 0 .equate coefficients of s
3
/:
Section 8.5
Constant Coeefficient Equations with Piecewise Continuous Forcing Functions
151
Solving this system yields A D 0, B D 1, C D 0, D D 1. Therefore,
1 C2s
.s
2
C 1/.s
2
C 2s C 2/
D
1
s
2
C 1
1
.s C 1/
2
C 1
$
1 e
t
sin t:
Since sin.t 2n / D sin t,
e
2ns
1 C 2s
.s
2
C 1/.s
2
C 2s C 2/
$ u.t 2n/
1 e
.t2n/
sin t;
so
y.t/ D sin t
1
X
nD0
u.t 2n /
1 e
.t2n/
:
If 2m t < 2.m C 1/ ,
y.t/ D sin t
m
X
nD0
1 e
.t2n/
D
m C 1
1 e
2.mC1/
1 e
2
!
e
t
!
sin t:
(f) f .t/ D
1
X
nD0
u.t n/; F .s/ D
1
s
1
X
nD0
e
ns
; Y.s/ D
1
s.s 1/.s 2/
;
1
s.s 1/.s 2/
D
1
2s
1
s 1
C
1
2
1
s 2
$
1
2
1 2e
t
C e
2t
I
e
ns
s.s 1/.s 2/
$
1
2
u.t n/
1 2e
tn
C e
2.t n/
I
y.t/ D
1
2
1
X
nD0
u.t n/
1 2e
tn
C e
2.t n/
:
If m t < m C 1,
y.t/ D
m
X
nD0
1 2e
tn
C e
2.t n/
D
m C 1
2
e
tm
m
X
nD0
e
n
C
1
2
e
2.t m/
m
X
nD0
e
2n
D
m C 1
2
e
tm
1 e
mC1
1 e
C
1
2
e
2.t m/
1 e
2mC2
1 e
2
:
8.5.24. (a) The assumptions imply that y
00
.t/ D
f .t/ by
0
.t/ cy.t/
a
on ; t
0
/ and .t
0
; ˇ/, y
00
.t
0
C/ D
f .t
0
C/ by
0
.t
0
/ cy.t
0
/
a
, and y
00
.t
0
/ D
f .t
0
/ by
0
.t
0
/ cy.t
0
/
a
. This implies the conclusion.
(b) Since y
00
has a junp d iscontinouit y at t
0
, appl ying Exercise 8.4.23(c) to y
0
shows that y
0
is not
differentiable at t
0
. Therefore,y cannot satisfy (A) on ; ˇ/ if f has a jump discontinuity at some t
0
in
.˛; ˇ/.
8.5.26. If 0 t < t
0
, then y.t/ D ´
0
.t/. Therefore, y.0/ D ´
0
.0/ D k
0
and y
0
.0/ D ´
0
.0/ D k
1
, and
ay
00
C by
0
C cy D
00
0
Cb´
0
0
C c´
0
D f
0
.t/ D f .t/; 0 < t < t
0
:
152 Chapter 8
Laplace Transforms
Now suppo se that 1 m n. For convenience, define t
nC1
D 1. If t
m
t < t
mC1
, then
y.t/ D
P
m
kD0
´
m
.t/, so
ay
00
C by C cy D
m
X
kD0
.a´
00
k
Cb´
0
k
C c´
k
/ D f
0
C
m
X
kD1
.f
k
f
k1
/ D f
m
D f; t
m
< t < t
mC1
:
Thus, y satisfies ay
00
C by
0
C cy D f on any open interval that does not contain any of the points t
1
,
t
2
,. . . , t
n
.
Since ´.t
m
/ D ´
0
.t
m
/ for m D 1; 2; : : : , y and y
0
are cont inuous on Œ0; 1/. Since y
00
.t/ D .by
0
.t/C
cy.t //=a if t ¤ t
m
(m D 1; 2; : : : ), y
00
has l imits from th e left at t
1
; : : : ; t
n
.
8.6 CONVOLUTION
8.6.2. ( a) sin at $
a
s
2
C a
2
and cos bt $
s
s
2
C b
2
, so H.s/ D
as
.s
2
C a
2
/.s
2
C b
2
/
.
(b) e
t
$
1
s 1
and sin at $
a
s
2
C a
2
, so H.s/ D
a
.s 1/.s
2
C a
2
/
.
(c) sinh at $
a
s
2
a
2
and cosh at $
1
s
2
a
2
, so H.s/ D
as
.s
2
a
2
/
2
.
(d) t sin !t $
2!s
.s
2
C !
2
/
2
and t cos !t $
s
2
!
2
.s
2
C !
2
/
2
, so H.s/ D
2!s.s
2
!
2
/
.s
2
C !
2
/
4
.
(e) e
t
Z
t
0
sin ! cos !.t / d D
Z
t
0
.e
sin !/
e
.t/
cos !.t /
d ; e
t
sin !t $
!
.s 1/
2
C !
2
and e
t
cos !t $
s 1
.s 1/
2
C !
2
, so H.s/ D
.s 1/!
..s 1/
2
C !
2
/
2
.
(f) e
t
Z
t
0
2
.t /e
d D
Z
t
0
2
e
2
.t /e
.t/
d ; t
2
e
2t
$
2
.s 2/
3
and te
t
$
1
.s 1/
2
, so
H.s/ D
2
.s 2/
3
.s 1/
2
.
(g) e
t
Z
t
0
e
cos !.t / d D
Z
t
0
e
2
e
.t/
cos !.t/ d ; te
2t
$
1
.s C 2/
2
and e
t
cos !t $
s C 1
.s C 1/
2
C !
2
, so H.s/ D
s C 1
.s C 2/
2
Œ.s C 1/
2
C !
2
.
(h) e
t
Z
t
0
e
2
sinh.t / d D
Z
t
0
e
3
e
.t/
sinh.t /
d ; e
3t
$
1
s 3
and e
t
sinh t $
1
.s 1/
2
1
,
so H.s/ D
1
.s 3/ ..s 1/
2
1/
.
(i) t e
2t
$
1
.s 2/
2
and sin 2t $
2
s
2
C 4
, so H.s/ D
2
.s 2/
2
.s
2
C 4/
.
(j) t
3
$
6
s
4
and e
t
$
1
s 1
, so H.s/ D
6
s
4
.s 1/
.
(k) t
6
$
s
7
and e
t
sin 3t $
3
.s C 1/
2
C 9
, so H.s/ D
3 6Š
s
7
Œ.s C 1/
2
C 9
.
(l) t
2
$
2
s
3
and t
3
$
6
s
4
, so H.s/ D
12
s
7
.
(m) t
7
$
s
8
and e
t
sin 2t $
2
.s C1/
2
C 4
, so H.s/ D
2 7Š
s
8
Œ.s C 1/
2
C 4
.
(n) t
4
$
24
s
5
and sin 2t $
2
s
2
C 4
, so H.s/ D
48
s
5
.s
2
C 4/
.
Section 8.6
Convolution
153
8.6.4. ( a) Y.s/ D
1
s
2
Y.s/
s
2
; Y.s/
1 C
1
s
2
D
1
s
2
; Y.s/
s
2
C 1
s
2
D
1
s
2
; Y.s/ D
1
s
2
C 1
, so y D sin t.
(b) Y.s/ D
1
s
2
C 1
2sY.s/
s
2
C 1
; Y.s/
1 C
2s
s
2
C 1
D
1
s
2
C 1
; Y.s/
.s C 1/
2
s
2
C 1
D
1
s
2
C 1
; Y.s/ D
1
.s C 1/
2
, so y D te
t
.
(c) Y.s/ D
1
s
C
2sY.s/
s
2
C 1
; Y .s/
1
2s
s
2
C 1
D
1
s
; Y.s/
.s 1/
2
s
2
C 1
D
1
s
; Y .s/ D
.s
2
C1/
s.s 1/
2
D
A
s
C
B
s
2
C
C
.s 1/
2
, where A.s 1/
2
CBs.s 1/ CC s D s
2
C1. Setting s D 0 and s D 1 shows that A D 1
and C D 2; equating coefficients of s
2
yields A C B D 1, so B D 0. Therefore, Y.s/ D
1
s
C
1
.s 1/
2
,
so y D 1 C 2te
t
.
(d) Y.s/ D
1
s
2
C
Y.s/
s C 1
; Y.s/
1
1
s C1
D
1
s
2
; Y.s/
s
s C 1
D
1
s
2
; Y.s/ D
s C 1
s
3
D
1
s
2
C
1
s
3
,
so y D t C
t
2
2
.
(e) sY.s/ 4 D
1
s
2
C
sY.s/
s
2
C 1
; Y.s/
s
s
s
2
C 1
D 4 C
1
s
2
; Y.s/
s
3
s
2
C 1
D
4s
2
C 1
s
2
; Y.s/ D
.4s
2
C 1/.s
2
C 1/
s
5
D
4s
4
C 5s
2
C 1
s
5
D
4
s
C
5
s
3
C
1
s
5
, so y D 4 C
5
2
t
2
C
1
24
t
4
.
(f) Y.s/ D
s 1
s
2
C 1
C
Y.s/
s
2
C 1
; Y .s/
1
1
s
2
C 1
D
s 1
s
2
C 1
; Y .s/
s
2
s
2
C 1
D
s 1
s
2
C 1
; Y .s/ D
s 1
s
2
D
1
s
1
s
2
, so y D 1 t.
8.6.6. Substi tuting x D t yields
Z
t
0
f .t /g./ d D
Z
0
t
f .x/g.t x/.dx/ D
Z
t
0
f .x/g.t
x/ dx D
Z
t
0
f ./g.t / d .
8.6.8. p.s/Y.s/ D F .s/ C a.k
1
C k
0
s/ C bk
0
, so (A) Y .s/ D
F .s/
p.s/
C
k
0
.as C b/ Ck
1
a
p.s/
. Since
p.s/ D a.s r
1
/.s r
2
/ and therefore b D a.r
1
C r
2
/, (A) can be rewritten as
Y.s/ D
F .s/
a.s r
1
/.s r
2
/
C
k
0
.s r
1
r
2
/
.s r
1
/.s r
2
/
C
k
1
.s r
1
/.s r
2
/
:
1
.s r
1
/.s r
2
/
D
1
r
2
r
1
1
s r
2
1
s r
1
$
e
r
2
t
e
r
1
t
r
2
r
1
;
so the convolution theorem implies that
F .s/
a.s r
1
/.s r
2
/
$
1
a
Z
t
0
e
r
2
e
r
1
r
2
r
1
f .t / d :
s r
1
r
2
.s r
1
/.s r
2
/
D
r
2
r
2
r
1
1
s r
1
r
1
r
2
r
1
1
s r
2
$
r
2
e
r
1
t
r
1
e
r
2
t
r
2
r
1
:
Therefore,
y.t/ D k
0
r
2
e
r
1
t
r
1
e
r
2
t
r
2
r
1
C k
1
e
r
2
t
e
r
1
t
r
2
r
1
C
1
a
a
Z
t
0
e
r
2
e
r
1
r
2
r
1
f .t / d :
154 Chapter 8
Laplace Transforms
8.6.10. p.s/Y.s/ D F .s/ C a.k
1
C k
0
s/ C bk
0
, so (A) Y .s/ D
F .s/
p.s/
C
k
0
.as C b/ C k
1
a
p.s/
. Since
p.s/ D a.s /
2
C !
2
and therefore b D 2a, (A) can be rew ritten as
Y.s/ D
F .s/
aŒ.s /
2
C !
2
C
k
0
.s 2/
.s /
2
C !
2
C
k
1
.s /
2
C !
2
:
1
.s /
2
C !
2
$
1
!
e
t
sin !t, so the convolution theorem impl ies that
F .s/
aŒ.s /
2
C !
2
$
1
a!
Z
t
0
e
t
f .t / sin ! d :
s 2
.s /
2
C !
2
D
.s /
.s /
2
C !
2
$ e
t
cos !t
!
sin !t
:
Therefore,
y.t/ D e
t
k
0
cos !t
!
sin !t
C
k
1
!
sin !t
C
1
a!
Z
t
0
e
t
f .t / sin ! d :
8.6.12. (a)
ay
00
C by
0
C cy D f
0
.t/ Cu.t t
1
/.f
1
.t/ f
0
.t//; y.0/ D 0; y
0
.0/ D 0I
p.s/Y.s/ D F
0
.s/ C L.u.t t
1
/.f
1
.t/ f
0
.t/// D F
0
.s/ C e
st
1
L.g/I
Y.s/ D
F
0
.s/ C e
st
1
G.s/
p.s/
: .B/
(b) Since F
0
.s/ $ f
0
.t/, G.s/ $ g.t/, and
1
p.s/
$ w.t/, the convolution theorem implies that
F
0
.s/
p.s/
$
Z
t
0
w.t /f
0
./ d and
G.s/
p.s/
$
Z
t
0
w.t /g./ d :
Now Theorem 8.4.2 implies that
e
st
1
G.s/
p.s/
$ u.t t
1
/
Z
t
0
w.t t
1
/g./ d , and (B) implies that
y.t/ D
Z
t
0
w.t /f
0
./ d C u.t t
1
/
Z
tt
1
0
w.t t
1
/g./ d :
(c) Let ´
0
.t/ D
R
t
0
w.t /f
0
./ d and ´
1
.t/ D
R
t
0
w.t /g./ d . Then y.t/ D ´
0
.t/ C u.t
t
1
1
.t t
1
/. Using Leibniz’s rule as in the solution of Exercise 8.6.11(b) shows that
´
0
0
.t/ D
Z
t
0
w
0
.t /f
0
./ d ; ´
0
1
.t/ D
Z
t
0
w
0
.t /g./ d ; t > 0;
´
00
0
.t/ D
f
0
.t/
a
C
Z
t
0
w
00
.t /f
0
./ d ; ´
00
1
.t/ D
g.t/
a
C
Z
t
0
w
00
.t /g./ d ; t > 0;
if t > 0, and that
00
0
C b´
0
0
C c´
0
D f
0
.t/ and a´
00
1
C b´
0
1
C c´
1
D f
1
.t C t
1
/ f
0
.t C t
1
/; t > 0:
Section 8.7
Constant Coefficient Equations with Impulses
155
This implies the stated conclusion for y
0
and y
00
on .0; t/ and .t; 1/, and that ay
00
C by
0
C cy D f .t/
on these intervals.
(d) Since the functions ´
0
.t/ and h.t/ D u.t t
1
1
.t t
1
/ are both continuous on Œ0; 1/ and h.t/ D 0
if 0 t t
1
, y is contin uous on Œ0; 1/. From (c), y
0
is continuous on Œ0; t
1
/ and .t
1
; 1/, so we need
only show that y
0
is continuous at t
1
. For th is it suffices to show that h
0
.t
1
/ D 0. Since h.t
1
/ D 0 if
t t
1
, (B) lim
t!t
1
h.t/ h.t
1
/
t t
1
D 0. If t > t
1
, then h.t/ D
Z
tt
1
0
w.t t
1
/g./ d . Since h.t
1
/ D 0,
ˇ
ˇ
ˇ
ˇ
h.t/ h.t
1
/
t t
1
ˇ
ˇ
ˇ
ˇ
Z
tt
1
0
jw.t t
1
/g./jd: .B/
Since g is continuous from the right at 0, we can choose constants T > 0 and M > 0 so that jg./j < M
if 0 T . Then (B) implies that
ˇ
ˇ
ˇ
ˇ
h.t/ h.t
1
/
t t
1
ˇ
ˇ
ˇ
ˇ
M
Z
tt
1
0
jw.t t
1
/jd ; t
1
< t < t
1
C T: .C/
Now suppose > 0. Since w.0/ D 0, we can choose T
1
such that 0 < T
1
< T and jw.x/j < =M if
0 x < T
1
. If t
1
< t < t
1
C T
1
and 0 t t
1
, then 0 t t
1
< T
1
, so (C) impli es that
ˇ
ˇ
ˇ
ˇ
h.t/ h.t
1
/
t t
1
ˇ
ˇ
ˇ
ˇ
< ; t
1
< t < t
1
C T:
Therefore, li m
t!t
1
C
h.t/ h.t
1
/
t t
1
D 0. This and (B) imply that h
0
.t
1
/ D 0.
8.7 CONSTANT COEFFICIENT EQUATIONS WITH IMPULSES
8.7.2. .s
2
Cs 2/
O
Y .s/ D
10
s C 1
C.9 C7s/ C7;
O
Y .s/ D
10 C .s C 1/.7s 2/
.s 1/.s C 2/.s C 1/
D
2
s C 2
C
5
s C 1
;
Oy D 2e
2t
C 5e
t
;
1
p.s/
D
1
.s C 2/.s 1/
D
1
3
1
s 1
1
s C 2
; w D L
1
1
p.s/
D
e
t
e
2t
3
;
y D 2e
2t
C 5e
t
C
5
3
u.t 1/
e
.t1/
e
2.t 1/
.
8.7.4. .s
2
C 1/
O
Y .s/ D
3
s
2
C9
1 C s;
O
Y .s/ D
3
.s
2
C 1/.s
2
C 9/
C
s 1
s
2
C 1
D
3
8
1
s
2
C 1
1
s
2
C9
C
s 1
s
2
C 1
D
1
8
8s 5
s
2
C 1
3
s
2
C 9
;
Oy D
1
8
.8 cos t 5 sin t sin 3t/;
1
p.s/
D
1
s
2
C 1
; w D L
1
1
p.s/
D sin t; y D
1
8
.8 cos t 5 sin t
sin 3t/ 2u.t =2/ cos t.
8.7.6. .s
2
1/
O
Y .s/ D
8
s
C1 s;
O
Y .s/ D
8 C s.1 s/
s.s 1/.s C 1/
D
4
s 1
C
3
s C 1
8
s
; Oy D 4e
t
C3e
t
8;
1
p.s/
D
1
.s 1/.s C 1/
D
1
2
1
s 1
1
s C 1
; w D L
1
1
p.s/
D
e
t
C e
t
2
D sinh t; y D 4e
t
C
3e
t
8 C 2u.t 2/ sinh.t 2/;
8.7.8. .s
2
C4/
O
Y .s/ D
8
s 2
C8s; (A)
O
Y .s/ D
8
.s 2/.s
2
C 4/
C
8s
s
2
C 4
;
8
.s 2/.s
2
C 4/
D
A
s 2
C
Bs C C
s
2
C 4
where A.s
2
C 4/ C .Bs C C /.s 2/ D 8. Setting s D 2 yields A D 1; setting s D 0
156 Chapter 8
Laplace Transforms
yields 4A 2C D 8, so C D 2; A C B D 0 (coefficient of x
2
), so B D A D 1; therefore
8
.s 2/.s
2
C4/
D
1
s 2
s C 2
s
2
C 4
, so (A) impli es that Oy D e
2t
C7 cos 2t sin 2t;
1
p.s/
D
1
s
2
C 4
; w D
L
1
1
p.s/
D
1
2
sin 2t. Since sin.2t / D sin 2t, y D e
2t
C7 cos 2t sin 2t
1
2
u.t =2/ sin 2t.
8.7.10. .s
2
C2s C1/
O
Y .s/ D
1
s 1
C.2s/2;
O
Y .s/ D
1 s.s 1/
.s 1/.s C 1/
2
D
A
s 1
C
B
s C 1
C
C
.s C 1/
2
where A.s C1/
2
C.B.s C1/CC /.s 1/ D 1 s.s 1/. Setting s D 1 yields A D 1=4; setting s D 1
yields C D 1=2; since A C B D 1 (coefficient of s
2
), B D 1 A D 5=4. Therefore,
O
Y .s/ D
1
4
1
s 1
5
4
1
s C 1
C
1
2
1
.s C 1/
2
; Oy D
1
4
e
t
C
1
4
e
t
.2t 5/;
1
p.s/
D
1
.s C 1/
2
; w D L
1
1
p.s/
D te
t
;
y D
1
4
e
t
C
1
4
e
t
.2t 5/ C 2u.t 2/.t 2/e
.t2/
.
8.7.12. .s
2
C 2s C 2/
O
Y .s/ D .2 s/ 2; Y.s/ D
.s C 1/ C 1
.s C 1/
2
C 1
; Oy D e
t
.sin t cos t/;
1
p.s/
D
1
.s C 1/
2
C 1
; w D L
1
1
p.s/
D e
t
sin t. Since sin.t / D sin t and si n.t 2 / D sin t,
y D e
t
.sin t cos t/ e
.t/
u.t / sin t 3u.t 2/e
.t2/
sin t.
8.7.14. .2s
2
3s2/
O
Y .s/ D
1
s
C2.2s/C3;
O
Y .s/ D
1 C s.7 2s/
2s.s C 1=2/.s 2/
D
7
10
1
s 2
6
5
1
s C 1=2
1
2s
;
Oy D
7
10
e
2t
6
5
e
t=2
1
2
;
1
p.s/
D
1
2.s C 1=2/.s 2/
D
1
5
1
s 2
1
s C 1=2
; w D L
1
1
p.s/
D
1
5
.e
2t
e
t=2
/; y D
7
10
e
2t
6
5
e
t=2
1
2
C
1
5
u.t 2/
e
2.t 2/
e
.t2/=2
;
8.7.16. .s
2
C 1/
O
Y .s/ D
s
s
2
C 4
1;
O
Y .s/ D
s
.s
2
C 1/.s
2
C 4/
1
s
2
C 1
D
1
3
s
s
2
C1
s
s
2
C 4
1
s
2
C 1
; Oy D
1
3
.cos t cos 2t 3 si n t/;
1
p.s/
D
1
s
2
C 1
; w D L
1
1
p.s/
D sin t. Since sin.t
=2/ D cos t and sin .t / D sin t,
y D
1
3
.cos t cos 2t 3 sin t/ 2u.t =2/ cos t C 3u.t / sin t:
8.7.18. .s
2
C 2s C 1/
O
Y .s/ D
1
s 1
1; (A)
O
Y .s/ D
1
.s 1/.s C 1/
2
1
.s C 1/
2
;
1
.s 1/.s C 1/
2
D
A
s 1
C
B
s C 1
C
C
.s C 1/
2
where A.s C 1/
2
C .B.s C 1/ C C /.s 1/ D 1. Setting s D 1 yields A D 1=4; setting s D 1 yields
C D 1=2; since A C B D 0 ( coefficient of s
2
), B D A D 1=4. Therefore,
1
.s 1/.s C 1/
2
D
1
4
1
s 1
1
4
1
s C 1
1
2
1
.s C 1/
2
:
This and (A) imply that
O
Y .s/ D
1
4
1
s 1
1
4
1
s C 1
3
2
1
.s C 1/
2
I
Section 8.7
Constant Coefficient Equations with Impulses
157
Oy D
1
4
e
t
e
t
.1 C 6t/
;
1
p.s/
D
1
.s C 1/
2
; w D L
1
1
p.s/
D te
t
;
y D
1
4
e
t
e
t
.1 C 6t/
u.t 1/.t 1/e
.t1/
C 2u.t 2/.t 2/e
.t2/
.
8.7.20. y
00
C4y D 1 2u.t =2/ Cı.t / 3ı.t 3=2/; y.0/ D 1; y
0
.0/ D 1. .s
2
C4/
O
Y .s/ D
1 2e
s=2
s
C s 1;
O
Y .s/ D
1 2e
s=2
s.s
2
C4/
C
s 1
s
2
C 4
. Sin ce
1
s.s
2
C 4/
D
1
4
1
s
s
s
2
C 4
,
O
Y .s/ D
1
4s
C
3
4
s
s
2
C 4
1
s
2
C 4
2e
s=2
1
s
s
s
2
C 4
. Oy D
3
4
cos 2t
1
2
sin 2t C
1
4
C
1
4
u.t=2/.1Ccos 2t/.
w D L
1
1
p.s/
D
1
2
sin 2t. Since sin 2.t / D sin 2t and sin 2.t 3=2/ D sin 2t,
y D
3
4
cos 2t
1
2
sin 2t C
1
4
C
1
4
u.t =2/.1 C cos 2t/ C
1
2
u.t / sin 2t C
3
2
u.t 3=2/ sin 2t.
8.7.26. w.t/ D e
t
sin t; f
h
.t/ D
u.t t
0
/ u.t t
0
h/
h
; .s
2
C2s C2/Y
h
.s/ D
1
h
e
st
0
e
s.t
0
Ch/
s
;
Y
h
.s/ D
1
h
e
st
0
e
s.t
0
Ch/
s.s
2
C 2s C 2/
;
1
s.s
2
C 2s C 2/
D
.s C 1/ C 1
2 ..s C 1/
2
C 1/
C
1
2s
$
1
2
1 e
t
.cos t C sin t/
;
y
h
.t/ D
8
ˆ
ˆ
ˆ
ˆ
<
ˆ
ˆ
ˆ
ˆ
:
0; 0 t < t
0
;
1
2h
h
1 e
.tt
0
/
.cos.t t
0
/ C sin.t t
0
//
i
; t
0
t < t
0
C h;
e
.tt
0
/
2h
h
e
h
.cos.t t
0
h/ C sin.t t
0
h// cos.t t
0
/ sin.t t
0
/
i
; t t
0
C h:
8.7.28. w.t/ D e
t
e
2t
; f
h
.t/ D
u.t t
0
/ u.t t
0
h/
h
; .s
2
C3sC2/Y
h
.s/ D
1
h
e
st
0
e
s.t
0
Ch/
s
;
Y
h
.s/ D
1
h
e
st
0
e
s.t
0
Ch/
s.s C 1/.s C 2/
;
1
s.s C 1/.s C 2/
D
1
2.s C 2/
1
s C 1
C
1
2s
$
e
2t
2
e
t
C
1
2
D
.e
t
1/
2
2
;
y
h
.t/ D
8
ˆ
ˆ
ˆ
ˆ
ˆ
<
ˆ
ˆ
ˆ
ˆ
ˆ
:
0; 0 t < t
0
;
.e
.tt
0
/
1/
2
2h
; t
0
t < t
0
C h;
.e
.tt
0
/
1/
2
.e
.tt
0
h/
1/
2
2h
; t t
0
C h:
8.7.30. (a) .s
2
1/
O
Y .s/ D 1, so Oy D w D L
1
1
s
2
1
D
1
2
e
t
e
t
; y D Oy C
1
X
kD0
u.t
k/w.t k/ D
1
2
1
X
kD0
u.t k/
e
tk
e
tk
. If m t < m C 1, then y D
1
2
m
X
kD0
e
tk
e
tk
D
1
2
.e
tm
e
t
/
m
X
kD0
e
k
e
mC1
1
2.e 1/
.e
tm
e
t
/.
(b) .s
2
C 1/
O
Y .s/ D 1, so Oy D w D L
1
1
s
2
C 1
D sin t; y D Oy C
1
X
kD0
u.t 2k/w.t 2k/ D
158 Chapter 8
Laplace Transforms
sin t
1
X
kD0
u.t 2k/. If 2m t < 2.m C1/, then y D .m C1/ sin t.
(c) .s
2
3s C 2/
O
Y .s/ D 1, so Oy D w D L
1
1
.s 1/.s 2/
D .e
2t
e
t
/; y D Oy C
1
X
kD0
u.t
k/w.t k/ D
1
X
kD0
u.t k/
e
2.t k/
e
tk
. If m t < m C 1, then y D
m
X
kD0
e
2.t k/
e
tk
D
e
2.t m/
m
X
kD0
e
2k
e
tm
m
X
kD0
e
k
D e
2.t m/
e
2mC2
1
e
2
1
e
.tm/
e
mC1
1
e 1
.
(d) w D L
1
1
s
2
C 1
D sin t; y D
1
X
kD1
u.t k/w.t k / D sin t
1
X
kD1
.1/
k
u.t k/, so
y D
(
0; 2m t < .2m C 1/;
sin t; .2m C 1/ t < .2m C 2/;
.m D 0; 1; : : : /.
CHAPTER 9
Linear Higher Order Equations
9.1 INTRODUCTION TO LINEAR HIGHER ORDE R EQUATIONS
9.1.2. From Example 9.1.1, y D c
1
x
2
Cc
2
x
3
C
c
3
x
y
0
D 2c
1
xC3c
2
x
2
c
3
x
2
, and y
00
D 2c
1
C6c
2
xC
2c
3
x
3
,
where
c
1
c
2
c
3
D 4
2c
1
C 3c
2
c
3
D 14
2c
1
6c
2
2c
3
D 20;
so c
1
D 2, c
2
D 3, c
3
D 1, and y D 2x
2
3x
3
C
1
x
.
9.1.4. The general solu tion of y
.n/
D 0 can be written as y.x/ D
n1
X
mD0
c
m
.x x
0
/
m
. Since y
.j /
.x/ D
n1
X
mDj
m.m1/ .mj C1/c
m
.xx
0
/
mj
, y
.j /
.x
0
/ D j Šc
j
. Therefore, y
i
D
.x x
0
/
i1
.i 1/Š
; 1 i n.
9.1.6. We omi t the verification that the given functions are solutions of the given equations.
(a) The equati on is normal on .1; 1/. W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
xe
x
e
x
e
x
e
x
.1 x/
e
x
e
x
e
x
.x 2/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; W .0/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 0
1 1 1
1 1 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
4. Apply Theorem 9.1.4.
(b) The equation is normal on .1; 1/.
W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
cos 2x e
x
sin 2x
e
x
e
x
.cos 2x 2 sin 2x/ e
x
.2 cos 2x C sin 2x/
e
x
e
x
.3 cos 2x C 4 sin 2x/ e
x
.4 cos 2x 3 sin 2x/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;
W.0/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 0
1 1 2
1 3 4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
8. Apply Theorem 9.1.4.
(c) The equation is normal on .1; 0/ and .0; 1/.
W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x
e
x
e
x
1
e
x
e
x
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2x. Apply Theorem 9.1.4.
(d) The equation is normal on .1; 0/ and .0; 1/.
W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
=x e
x
=x 1
e
x
.1=x 1=x
2
/ e
x
.x C 1/=x
2
0
e
x
.1=x 2=x
2
C 2=x
3
/ e
x
.x
2
C 2x C 2/=x
3
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2=x
2
. Apply Theorem 9.1.4.
159
160 Chapter 9
Linear Higher Order Equations
(e) The equation is nor mal on .1; 1/. W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
e
x
1 2x e
x
0 2 e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; W .0/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 0 1
1 0 1
0 2 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2; Apply
Theorem 9.1.4.
(f) The equation is normal on .1; 1=2/ and .1=2; 1/.
W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x e
x
e
x
e
2x
1 e
x
e
x
2e
2x
0 e
x
e
x
4e
.
2x/
0 e
x
e
x
8e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
.12x 6/. Apply Theorem 9.1.4.
(g) The equation is normal on .1; 0/ and .0; 1/.
W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x
2
e
2x
e
2x
0 2x 2e
2x
2e
2x
0 2 4e
2x
4e
2x
0 0 8e
2x
8e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 128x. Apply Theorem 9.1.4.
9.1.8. From Abel’s formula, (A) W .x/ D W.=2/ exp
Z
x
=4
tan t dt
;
Z
x
=4
tan t dt D ln cos t
ˇ
ˇ
ˇ
ˇ
x
=4
D
ln.
p
2 cos x/; t herefore (A) i mplies that W.x/ D
p
2K cos x.
9.1.10. (a) W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 e
x
e
x
0 e
x
e
x
0 e
x
e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D .e
x
/.e
x
/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1
0 1 1
0 1 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2.
(b) W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
sin x e
x
cos x
e
x
e
x
.cos x C si n x/ e
x
.cos x sin x/
e
x
2e
x
cos x 2e
x
sin x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
D e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 sin x cos x
1 cos x C sin x cos x sin x
1 2 co s x 2 sin x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 sin x cos x
0 cos x sin x
1 2 cos x sin x 2 sin x cos x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 sin x cos x
0 cos x sin x
0 sin x cos x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
3x
(c) W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 x C 1 x
2
C 2
0 1 2x
0 0 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 4.
(d) W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x ln jxj 1=x
1 ln jxj C 1 1=x
2
0 1=x 2=x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1=x
2
1 ln jxj C 1 1=x
2
0 1 2=x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
1
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1
1 ln jxj C1 1
0 1 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
1
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1
0 1 2
0 1 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
1
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1
0 1 2
0 0 4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 4=x
2
:
Section 9.1
Intr oduction to Linear Hi gher Order Equations
161
(e) W.x/ D
2
6
6
6
6
6
6
6
4
1 x x
2
=2 x
3
=3 x
n
=
0 1 x x
2
=2 x
n1
=.n 1/Š
0 0 1 x x
n2
=.n 2/Š
0 0 0 1 x
n3
=.n 3/Š
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
0 0 0 0 1
3
7
7
7
7
7
7
7
5
D 1.
(f) W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x
e
x
e
x
1
e
x
e
x
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x
1 1 1
1 1 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x
0 2 1 x
0 0 x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2x.
(g) W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
=x e
x
=x 1
e
x
=x e
x
=x
2
e
x
=x e
x
=x
2
0
e
x
=x 2e
x
=x
2
C 2e
x
=x
3
e
x
=x C 2e
x
=x
2
C 2e
x
=x
3
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1=x 1=x 1
1=x 1=x
2
1=x 1=x
2
0
1=x 2=x
2
C 2=x
3
1=x C 2=x
2
C 2=x
3
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
1=x 1=x
2
1=x 1=x
2
1=x 2=x
2
C 2=x
3
1=x C 2=x
2
C 2=x
3
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
1=x 1=x
2
2=x
1=x 2=x
2
C 2=x
3
4=x
2
ˇ
ˇ
ˇ
ˇ
D 2=x
2
:
(h) W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
e
x
1 2x e
x
0 2 e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1
1 2x 1
0 2 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
x
x
2x 1
2 1
x
2
1
2 1

D e
x
.x
2
2x C 2/.
(i) W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
3
1=x 1=x
2
1 3x
2
1=x
2
2=x
3
0 6x 2=x
3
6=x
4
0 6 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 2x
3
2=x 3=x
2
1 3x
2
1=x
2
2=x
3
0 6x 2=x
3
6=x
4
0 6 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2x
3
2=x 3=x
2
6x 2=x
3
6=x
4
6 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2=x
4
3=x
5
6 2=x
4
6=x
5
6 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2=x
4
3=x
5
0 8=x
4
15=x
5
0 0 15=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 240=x
5
:
162 Chapter 9
Linear Higher Order Equations
(j) W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x e
2x
e
x
e
x
1 2e
2x
e
x
e
x
0 4e
2x
e
x
e
x
0 8e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x 1
1 1 1 2
1 1 0 4
1 1 0 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1 C x 0 1 2x
1 1 1 2
1 1 0 4
1 1 0 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1 C x 1 2x
1 1 4
1 1 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 1 C x 1 2x
2 1 4
0 1 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 1 C x 1 2x
0 x 3 C 2x
0 1 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 6e
2x
.2x 1/:
(k) W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
2x
e
2x
1 x
2
2e
2x
2e
2x
0 2x
4e
2x
4e
2x
0 2
8e
2x
8e
2x
0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 x
2
2 2 0 2x
4 4 0 2
8 8 0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2 2x
4 4 2
8 8 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 2 2x
8 4 2
0 8 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 128x:
9.1.12. Let y be an arbitrary solution of Ly D 0 on .a; b/. Since f´
1
; : : : ; ´
n
g is a fundamental set of
solutions of Ly D 0 on .a; b/, t here are constants c
1
, c
2
,. . . , c
n
such that y D
n
X
iD1
c
i
y
i
. Therefore,
y D
n
X
iD1
c
i
n
X
j D1
a
ij
y
j
D
n
X
j D1
C
j
y
j
, with C
j
D
n
X
iD1
a
ij
c
i
. H ence fy
1
; : : : ; y
n
g is a fu ndamental set of
solutions of Ly D 0 on .a; b/.
9.1.14. Let y be a given sol ution of Ly D 0 and ´ D
n
X
j D1
y
.j 1/
.x
0
/y
j
Then ´
.r/
.x
0
/ D y
.r/
.x
0
/,
r D 0; : : : ; n 1. Since the solution of every initial value problem is unique (Theorem 9.1.1), ´ D y.
9.1.16. If fy
1
; y
2
; : : : ; y
n
g is linearly dependent on .a; b/ there are constants c
1
; : : : ; c
n
, not all zeros,
such that c
1
y
1
C c
2
y
2
C C c
n
y
n
. Let k be the smallest integer such that c
k
¤ 0. If k D 1, then
y
1
D
1
c
1
.c
2
y
2
CCc
n
y
n
/; if 1 < k < n, then y
k
D 0y
1
CC0y
k1
C
1
c
k
.c
kC1
y
kC1
CCc
n
y
n
/;
if k D n, then y
n
D 0, so y
n
D 0 y
1
C 0 y
2
C C 0 y
n
.
9.1.18. Since F D
P
˙f
1i
1
f
2i
2
; : : : ; f
ni
n
,
F
0
D
X
˙f
0
1i
1
f
2i
2
; : : : ; f
ni
n
C
X
˙f
1i
1
f
0
2i
2
; : : : ; f
ni
n
C C
X
˙f
1i
1
f
2i
2
; : : : ; f
0
ni
n
D F
1
C F
2
C C F
n
:
Section 9.1
Intr oduction to Linear Hi gher Order Equations
163
9.1.20. Since y
.n/
j
D
n
X
kD1
.P
k
=P
0
/y
.nk/
j
, Exercise 9.1.19 implies that
W
0
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
y
2
y
n
y
0
1
y
0
2
y
0
n
:
:
:
:
:
:
:
:
:
:
:
:
y
.n2/
1
y
.n2/
2
y
.n2/
n
P
n
kD1
.P
k
=P
0
/y
.nk/
1
P
n
kD1
.P
k
=P
0
/y
.nk/
2
P
n
kD1
.P
k
=P
0
/y
.nk/
n
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;
so Exercise 9.1.17 implies that
W
0
D
n
X
kD1
P
k
P
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
y
2
y
n
y
0
1
y
0
2
y
0
n
:
:
:
:
:
:
:
:
:
:
:
:
y
.n2/
1
y
.n2/
2
y
.n2/
n
y
.nk/
1
y
.nk/
2
y
.nk/
n
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:
However, the determinants on the right each have two i dentical rows if k D 2; : : : ; n. Therefore,W
0
D
P
1
W
P
0
. Separating variables yields
W
0
W
D
P
1
P
0
; hence ln
W.x/
W.x
0
/
D
Z
x
x
0
P
1
.t/
P
0
.t/
dt, wh ich implies
Abel’s formula.
9.1.22. See the proof of Theorem 5.3.3.
9.1.24. (a)
P
0
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1 x
2
C 1
1 2x 2x
0 2 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1 x
2
C1
1 0 0
0 2 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
x
2
1 x
2
C 1
2 2
ˇ
ˇ
ˇ
ˇ
D 4I
P
1
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1 x
2
C 1
1 2x 2x
0 0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0; P
2
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1 x
2
C 1
0 2 2
0 0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0; P
3
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2x 2x
0 2 2
0 0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
0. Therefore, 4y
000
D 0, which is equivalent to y
000
D 0.
(b)
P
0
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x
e
x
e
x
1
e
x
e
x
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x
1 1 1
1 1 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 0 x
0 2 1
1 1 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2xI
P
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x
e
x
e
x
1
e
x
e
x
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x
1 1 1
1 1 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 2 x
0 0 1
1 1 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2I
P
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x
e
x
e
x
0
e
x
e
x
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x
1 1 0
1 1 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 0 x
1 1 0
0 2 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2xI
164 Chapter 9
Linear Higher Order Equations
P
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
1
e
x
e
x
0
e
x
e
x
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1
1 1 0
1 1 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 0 1
1 2 0
1 1 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2:
Therefore, 2xy
000
C 2y
00
C 2xy
0
2y D 0, which is equivalent to xy
000
y
00
xy
0
C y D 0.
(c)
P
0
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
xe
x
1
e
x
e
x
.1 x/ 0
e
x
e
x
.x 2/ 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1
1 1 x 0
1 x 2 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
1 1 x
1 x 2
ˇ
ˇ
ˇ
ˇ
D 3 2xI
P
1
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
xe
x
1
e
x
e
x
.1 x/ 0
e
x
e
x
.3 x/ 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1
1 1 x 0
1 3 x 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
1 1 x
1 3 x
ˇ
ˇ
ˇ
ˇ
D 2I
P
2
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
xe
x
1
e
x
e
x
.x 2/ 0
e
x
e
x
.3 x/ 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1
1 x 2 0
1 3 x 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
1 x 2
1 3 x
ˇ
ˇ
ˇ
ˇ
D 2x 5I
P
3
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
.1 x/ 0
e
x
e
x
.x 2/ 0
e
x
e
x
.3 x/ 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0:
Therefore, .3 2x/y
000
C 2y
00
C .2x 5/y
0
D 0.
(d)
P
0
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
e
x
1 2x e
x
0 2 e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1
1 2x 1
0 2 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
2 0
1 2x 2 0
0 2 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
x
ˇ
ˇ
ˇ
ˇ
x x
2
2
1 2x 2
ˇ
ˇ
ˇ
ˇ
D e
x
.x
2
2x C 2/I
P
1
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
e
x
1 2x e
x
0 0 e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
x
ˇ
ˇ
ˇ
ˇ
x x
2
1 2x
ˇ
ˇ
ˇ
ˇ
D x
2
e
x
I
P
2
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
e
x
0 2 e
x
0 0 e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
x
ˇ
ˇ
ˇ
ˇ
x x
2
0 2
ˇ
ˇ
ˇ
ˇ
D 2xe
x
I
P
3
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2x e
x
0 2 e
x
0 0 e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
x
ˇ
ˇ
ˇ
ˇ
1 2x
0 2
ˇ
ˇ
ˇ
ˇ
D 2e
x
:
Therefore, e
x
.x
2
2x C 2/y
000
C x
2
e
x
y
00
2xe
x
y
0
C 2e
x
y D 0; which is equivalent to .x
2
2x C
2/y
000
x
2
y
00
C 2xy
0
2y D 0.
(e)
P
0
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1=x
1 2x 1=x
2
0 2 2=x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1=x
2
1 2x 1=x
2
0 2 2=x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1=x
2
0 x 2=x
2
0 2 2=x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
x 2=x
2
2 2=x
3
ˇ
ˇ
ˇ
ˇ
D
6
x
I
Section 9.1
Intr oduction to Linear Hi gher Order Equations
165
P
1
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1=x
1 2x 1=x
2
0 0 6=x
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6
x
4
ˇ
ˇ
ˇ
ˇ
x x
2
1 2x
ˇ
ˇ
ˇ
ˇ
D
6
x
2
I
P
2
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1=x
0 2 2=x
3
0 0 6=x
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6
x
4
ˇ
ˇ
ˇ
ˇ
x x
2
0 2
ˇ
ˇ
ˇ
ˇ
D
12
x
3
I
P
3
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2x 1=x
2
0 2 2=x
3
0 0 6=x
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6
x
4
ˇ
ˇ
ˇ
ˇ
1 2x
0 2
ˇ
ˇ
ˇ
ˇ
D
12
x
4
:
Therefore,
6
x
y
000
6
x
2
y
00
C
12
x
3
y
0
12
x
4
y D 0, which is equivalent to x
3
y
000
Cx
2
y
00
2xy
0
C2y D 0.
(f)
P
0
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 e
x
e
3x
1 e
x
3e
3x
0 e
x
9e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 1 1
1 1 3
0 1 9
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 0 8
1 0 6
0 1 9
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
x C 1 8
1 6
ˇ
ˇ
ˇ
ˇ
D 2e
4x
.1 3x/I
P
1
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 e
x
e
3x
1 e
x
3e
3x
0 e
x
27e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C1 1 1
1 1 3
0 1 27
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 0 26
1 0 24
0 1 27
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
x C 1 26
1 24
ˇ
ˇ
ˇ
ˇ
D 2e
4x
.12x 1/I
P
2
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 e
x
e
3x
0 e
x
9e
3x
0 e
x
27e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 1 1
0 1 9
0 1 27
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 1 1
0 1 9
0 0 18
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 18e
4x
.x C 1/I
P
3
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 e
x
3e
3x
0 e
x
9e
3x
0 e
x
27e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 3
0 1 9
0 1 27
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
4x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 3
0 1 9
0 0 18
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 18e
4x
:
Therefore,
2e
4x
.1 3x/y
000
C 2e
4x
.12x 1/y
00
18e
4x
.x C 1/y
0
C 18e
4x
y D 0;
which is equivalent to
.3x 1/y
000
.12x 1/y
00
C 9.x C 1/y
0
9y D 0:
166 Chapter 9
Linear Higher Order Equations
(g)
P
0
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
3
1=x 1=x
2
1 3x
2
1=x
2
2=x
3
0 6x 2=x
3
6=x
4
0 6 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x
2
1=x
2
1=x
3
1 3x
2
1=x
2
2=x
3
0 6x 2=x
3
6=x
4
0 6 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x
2
1=x
2
1=x
3
0 2x
2
2=x
2
3=x
3
0 6x 2=x
3
6=x
4
0 6 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2x
2
2=x
2
3=x
3
6x 2=x
3
6=x
4
6 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2x 2=x
3
3=x
4
6x 2=x
3
6=x
4
6 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2x 2=x
3
3=x
4
0 8=x
3
15=x
4
0 0 15=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
240
x
5
P
1
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
3
1=x 1=x
2
1 3x
2
1=x
2
2=x
3
0 6x 2=x
3
6=x
4
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x
2
1=x
2
1=x
3
1 3x
2
1=x
2
2=x
3
0 6x 2=x
3
6=x
4
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x
2
1=x
2
1=x
3
0 2x
2
2=x
2
3=x
3
0 6x 2=x
3
6=x
4
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2x 2=x
3
3=x
4
6x 2=x
3
6=x
4
0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2x 2=x
3
3=x
4
0 8=x
3
15=x
4
0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2x
3
ˇ
ˇ
ˇ
ˇ
8=x
3
15=x
4
24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
D
1200
x
6
I
P
2
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
3
1=x 1=x
2
1 3x
2
1=x
2
2=x
3
0 6 6=x
4
24=x
5
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x
2
1=x
2
1=x
3
1 3x
2
1=x
2
2=x
3
0 6 6=x
4
24=x
5
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x
2
1=x
2
1=x
3
0 2x
2
2=x
2
3=x
3
0 6 6=x
4
24=x
5
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2=x
4
3=x
5
6 6=x
4
24=x
5
0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2=x
4
3=x
5
0 0 15=x
5
0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2x
3
ˇ
ˇ
ˇ
ˇ
0 15=x
5
24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
D
720
x
7
I
P
3
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
3
1=x 1=x
2
0 6x 2=x
3
6=x
4
0 6 6=x
4
24=x
5
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
6 2=x
4
6=x
5
6 6=x
4
24=x
5
0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
6 2=x
4
6=x
5
0 8=x
4
30=x
5
0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 6x
2
ˇ
ˇ
ˇ
ˇ
8=x
4
30=x
5
24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
D
1440
x
6
I
Section 9.1
Intr oduction to Linear Hi gher Order Equations
167
P
4
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 3x
2
1=x
2
2=x
3
0 6x 2=x
3
6=x
4
0 6 6=x
4
24=x
5
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
6 2=x
4
6=x
5
6 6=x
4
24=x
5
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
6 2=x
4
6=x
5
0 8=x
4
30=x
5
0 0 24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 6x
ˇ
ˇ
ˇ
ˇ
8=x
4
30=x
5
24=x
5
120=x
6
ˇ
ˇ
ˇ
ˇ
D
1440
x
9
:
Therefore,
240
x
5
y
.4/
1200
x
6
y
000
C
720
x
7
y
00
C
1440
x
8
y
0
1440
x
9
y D 0;
which is equivalent to x
4
y
.4/
C 5x
3
y
000
3x
2
y
00
6xy
0
C 6y D 0.
(h)
P
0
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x ln jxj 1=x x
2
1 ln jxjC 1 1=x
2
2x
0 1=x 2=x
3
2
0 1=x
2
6=x
4
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1=x
2
x
1 ln jxj C 1 1=x
2
2x
0 1=x 2=x
3
2
0 1=x
2
6=x
4
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1=x
2
x
0 1 2=x
2
x
0 1=x 2=x
3
2
0 1=x
2
6=x
4
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2=x
2
x
1=x 2=x
3
2
1=x
2
6=x
4
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2=x
2
x
1=x 2=x
3
2
1=x
2
6=x
4
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2=x
2
x
0 4=x
3
1
0 8=x
4
1=x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
4=x
3
1
8=x
4
1=x
ˇ
ˇ
ˇ
ˇ
D
12
x
3
I
P
1
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x ln jxj 1=x x
2
1 ln jxj C 1 1=x
2
2x
0 1=x 2=x
3
2
0 2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1=x
2
x
1 ln jxj C 1 1=x
2
2x
0 1=x 2=x
3
2
0 2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1=x
2
x
0 1 2=x
2
x
0 1=x 2=x
3
2
0 2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2=x
2
x
1=x 2=x
3
2
2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2=x
2
x
0 4=x
3
1
0 28=x
5
2=x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
4=x
3
1
28=x
5
2=x
2
ˇ
ˇ
ˇ
ˇ
D
36
x
4
I
168 Chapter 9
Linear Higher Order Equations
P
2
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x ln jxj 1=x x
2
1 ln jxj C 1 1=x
2
2x
0 1=x
2
6=x
4
0
0 2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1=x
2
x
1 ln jxj C 1 1=x
2
2x
0 1=x
2
6=x
4
0
0 2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj 1=x
2
x
0 1 2=x
2
x
0 1=x
2
6=x
4
0
0 2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2=x
2
x
1=x
2
6=x
4
0
2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2=x
2
x
0 8=x
4
1=x
0 28=x
5
2=x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
8=x
4
1=x
28=x
5
2=x
2
ˇ
ˇ
ˇ
ˇ
D
12
x
5
I
P
3
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x ln jxj 1=x x
2
0 1=x 2=x
3
2
0 1=x
2
6=x
4
0
0 2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1=x 2=x
3
2
1=x
2
6=x
4
0
2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1=x 2=x
3
2
0 4=x
4
2=x
0 20=x
5
4=x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
4=x
4
2=x
20=x
5
4=x
2
ˇ
ˇ
ˇ
ˇ
D
24
x
6
I
P
4
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 ln jxj C 1 1=x
2
2x
0 1=x 2=x
3
2
0 1=x
2
6=x
4
0
0 2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1=x 2=x
3
2
1=x
2
6=x
4
0
2=x
3
24=x
5
0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2
ˇ
ˇ
ˇ
ˇ
1=x
2
6=x
4
2=x
3
24=x
5
ˇ
ˇ
ˇ
ˇ
D
24
x
7
:
Therefore,
12
x
3
y
.4/
C
36
x
4
y
000
12
x
5
y
00
C
24
x
6
y
0
24
x
7
y D 0;
which is equivalent to x
4
y
.4/
C 3x
2
y
000
x
2
y
00
C2xy
0
2y D 0.
(i)
P
0
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x e
2x
e
x
e
x
1 2e
2x
e
x
e
x
0 4e
2x
e
x
e
x
0 8e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x 1
1 1 1 2
1 1 0 4
1 1 0 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 1 x 1
0 1 1 2
2 1 0 4
0 1 0 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 1 x 1
0 1 1 2
0 0 x 3
0 1 0 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 2
0 x 3
1 0 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 2
0 x 3
0 1 6
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
x 3
1 6
ˇ
ˇ
ˇ
ˇ
D 6e
2x
.2x 1/I
Section 9.1
Intr oduction to Linear Hi gher Order Equations
169
P
1
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x e
2x
e
x
e
x
1 2e
2x
e
x
e
x
0 4e
2x
e
x
e
x
0 16e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x 1
1 1 1 2
1 1 0 4
1 1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 1 x 1
2 1 1 2
0 1 0 4
0 1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1
1 0 4
1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1
0 x 3
0 x 15
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
x 3
x 15
ˇ
ˇ
ˇ
ˇ
D 24xe
2x
I
P
2
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x e
2x
e
x
e
x
1 2e
2x
e
x
e
x
0 8e
2x
e
x
e
x
0 16e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x 1
1 1 1 2
1 1 0 8
1 1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 1 x 1
2 1 1 2
2 1 0 8
0 1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 1 x 1
2 1 1 2
0 0 1 6
0 1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1
0 1 6
1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1
0 1 6
0 x 15
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
1 6
x 15
ˇ
ˇ
ˇ
ˇ
D 6e
2x
.5 2x/I
P
3
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x e
2x
e
x
e
x
0 4e
2x
e
x
e
x
0 8e
2x
e
x
e
x
0 16e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 x 1
1 1 0 4
1 1 0 8
1 1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 1 x 1
0 1 0 4
2 1 0 8
0 1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x 1
0 x 3
0 x 15
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
x 3
x 15
ˇ
ˇ
ˇ
ˇ
D 24xe
2x
I
P
4
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
1 2e
2x
e
x
e
x
0 4e
2x
e
x
e
x
0 8e
2x
e
x
e
x
0 16e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 2
1 1 0 4
1 1 0 8
1 1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 1 1 2
2 1 0 4
0 1 0 8
2 1 0 16
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 1 1 2
2 1 0 4
0 1 0 8
0 0 0 12
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 2
1 0 8
0 0 12
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 2
0 1 6
0 0 12
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 24e
2x
:
Therefore,
6e
2x
.2x 1/y
.4/
24xe
2x
y
000
C 6e
2x
.5 2x/y
00
C 24xe
2x
y
0
24e
2x
y D 0;
170 Chapter 9
Linear Higher Order Equations
which is equivalent to .2x 1/y
.4/
4xy
000
C.5 2x/y
00
C 4xy
0
4y D 0.
9.1.24. (j)
P
0
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
2x
e
2x
1 x
2
2e
2x
2e
2x
0 2x
4e
2x
4e
2x
0 2
8e
2x
8e
2x
0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 x
2
2 2 0 2x
4 4 0 2
8 8 0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2 2x
4 4 2
8 8 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2 2x
0 8 2 4x
0 0 8x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 128x
P
1
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
2x
e
2x
1 x
2
2e
2x
2e
2x
0 2x
4e
2x
4e
2x
0 2
16e
2x
16e
2x
0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 x
2
2 2 0 2x
4 4 0 2
16 16 0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2 2x
4 4 2
16 16 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2 2x
0 8 2 4x
0 0 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 128I
P
2
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
2x
e
2x
1 x
2
2e
2x
2e
2x
0 2x
8e
2x
8e
2x
0 0
16e
2x
16e
2x
0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 x
2
2 2 0 2x
8 8 0 0
16 16 0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2 2 2x
8 8 0
16 16 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2x
ˇ
ˇ
ˇ
ˇ
8 8
16 16
ˇ
ˇ
ˇ
ˇ
D 512xI
P
3
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
2x
e
2x
1 x
2
4e
2x
4e
2x
0 2
8e
2x
8e
2x
0 0
16e
2x
16e
2x
0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 x
2
4 4 0 2
8 8 0 0
16 16 0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
4 4 2
8 8 0
16 16 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2
ˇ
ˇ
ˇ
ˇ
8 8
16 16
ˇ
ˇ
ˇ
ˇ
D 512I
P
4
.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2e
2x
2e
2x
0 2x
4e
2x
4e
2x
0 2
8e
2x
8e
2x
0 0
16e
2x
16e
2x
0 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0:
Therefore, 128xy
.4/
C128y
000
C512xy
00
512y D 0, which is equivalent to xy
.4/
y
000
4xy
00
C4y
0
D 0.
9.2 HIGHER ORDER CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS
9.2.2. p.r/ D r
4
C 8r
2
9 D .r 1/.r C 1/.r
2
C 9/; y D c
1
e
x
Cc
2
e
x
C c
3
cos 3x C c
4
sin 3x.
9.2.4. p.r/ D 2r
3
C 3r
2
2r 3 D .r 1/.r C 1/.2r C 3/; y D c
1
e
x
C c
2
e
x
C c
3
e
3x=2
.
Section 9.2
Higher Order Constant Coefficient Ho mogeneous Equations
171
9.2.6. p.r/ D 4r
3
8r
2
C 5r 1 D .r 1/.2r 1/
2
; y D c
1
e
x
C e
x=2
.c
2
C c
3
x/.
9.2.8. p.r/ D r
4
C r
2
D r
2
.r
2
C 1/; y D c
1
C c
2
x C c
3
cos x C c
4
sin x.
9.2.10. p.r/ D r
4
C 12r
2
C 36 D .r
2
C 6/
2
; y D .c
1
C c
2
x/ cos
p
6x C .c
3
C c
4
x/ sin
p
6x.
9.2.12. p.r/ D 6r
4
C 5r
3
C 7r
2
C 5r C 1 D .2r C 1/.3r C 1/.r
2
C 1/; y D c
1
e
x=2
C c
2
e
x=3
C
c
3
cos x C c
4
sin x.
9.2.14. p.r/ D r
4
4r
3
C7r
2
6r C2 D .r 1/
2
.r
2
2r C2/; y D e
x
.c
1
Cc
2
x Cc
3
cos x Cc
4
sin x/.
9.2.16. p.r/ D r
3
C 3r
2
r 3 D .r 1/.r C 1/.r C 3/;
y D c
1
e
x
C c
2
e
x
C c
3
e
3x
y
0
D c
1
e
x
c
2
e
x
3c
3
e
3x
y
00
D c
1
e
x
C c
2
e
x
C 9c
3
e
3x
I
c
1
C c
2
C c
3
D 0
c
1
c
2
3c
3
D 14
c
1
C c
2
C9c
3
D 40
I
c
1
D 2, c
2
D 3, c
3
D 5; y D 2e
x
C3e
x
5e
3x
.
9.2.18. p.r/ D r
3
2r 4 D .r 2/.r
2
C 2r C 2/;
y D e
x
.c
1
cos x C c
2
sin x/ C c
3
e
2x
y
0
D e
x
..c
1
c
2
/ cos x C .c
1
C c
2
/ sin x/ C 2c
3
e
2x
y
00
D e
x
.2c
1
sin x 2c
2
cos x/ C 4c
3
e
2x
I
c
1
C c
3
D 6
c
1
C c
2
C 2c
3
D 3
2c
2
C 4c
3
D 22
I
c
1
D 2, c
2
D 3, c
3
D 4; y D 2e
x
cos x 3e
x
sin x C 4e
2x
.
9.2.20. p.r/ D r
3
6r
2
C 12r 8 D .r 2/
3
;
y D e
2x
.c
1
C c
2
x C c
3
x
2
/
y
0
D e
2x
.2c
1
C c
2
C .2c
2
C 2c
3
/x C2c
3
x
2
/
y
00
D 2e
2x
.2c
1
C 2c
2
C c
3
C 2.c
2
C 2c
3
/x C 2c
3
x
2
/
I
c
1
D 1
2c
1
C c
2
D 1
4c
1
C 4c
2
C 2c
3
D 4
c
1
D 1, c
2
D 3, c
3
D 2; y D e
2x
.1 3x C 2x
2
/.
9.2.22. p.r/ D 8r
3
4r
2
2r C 1 D .2r C 1/.2r 1/
2
;
y D e
x=2
.c
1
C c
2
x/ C c
3
e
x=2
y
0
D
1
2
e
x=2
.c
1
C 2c
2
C c
2
x/
1
2
c
3
e
x=2
y
00
D
1
4
e
x=2
.c
1
C 4c
2
C c
2
x/ C
1
4
c
3
e
x=2
I
c
1
C c
3
D 4
1
2
c
1
C c
2
1
2
c
3
D 3
1
4
c
1
C c
2
C
1
4
c
3
D 1
I
c
1
D 1, c
2
D 2, c
3
D 3; y D e
x=2
.1 2x/ C 3e
x=2
.
9.2.24. p.r/ D r
4
6r
3
C 7r
2
C 6r 8 D .r 1/.r 2/.r 4/.r C 1/;
y D c
1
e
x
C c
2
e
2x
C c
3
e
4x
C c
4
e
x
y
0
D c
1
e
x
C 2c
2
e
2x
C 4c
3
e
4x
c
4
e
x
y
00
D c
1
e
x
C 4c
2
e
2x
C 16c
3
e
4x
C c
4
e
x
y
000
D c
1
e
x
C 8c
2
e
2x
C 64c
3
e
4x
c
4
e
x
I
c
1
C c
2
C c
3
C c
4
D 2
c
1
C 2c
2
C4c
3
c
4
D 8
c
1
C 4c
2
C 16c
3
C c
4
D 14
c
1
C 8c
2
C 64c
3
c
4
D 62
I
c
1
D 4, c
2
D 1, c
3
D 1, c
4
D 2; y D 4e
x
C e
2x
e
4x
C 2e
x
.
172 Chapter 9
Linear Higher Order Equations
9.2.26. p.r/ D r
4
C 2r
3
2r
2
8r 8 D .r 2/.r C 2/.r
2
C 2r C2/;
y D c
1
e
2x
C c
2
e
2x
C e
x
.c
3
cos x C c
4
sin x/
y
0
D 2c
1
e
2x
2c
2
e
2x
e
x
..c
3
c
4
/ cos x C .c
3
C c
4
/ sin x/
y
00
D 4c
1
e
2x
C 4c
2
e
2x
C e
x
.2c
3
sin x 2c
4
cos x/
y
000
D 8c
1
e
2x
8c
2
e
2x
C e
x
..2c
3
C 2c
4
/ cos x C 2.c
4
c
3
/ sin x/
I
c
1
C c
2
C c
3
D 5
2c
1
2c
2
c
3
C c
4
D 2
4c
1
C 4c
2
2c
4
D 6
8c
1
8c
2
C 2c
3
C 2c
4
D 8
I
c
1
D 1, c
2
D 1, c
3
D 3, c
4
D 1; y D e
2x
C e
2x
C e
x
.3 cos x C sin x/.
9.2.28. (a ) W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
xe
x
e
2x
e
x
e
x
.x C 1/ 2e
2x
e
x
e
x
.x C 2/ 4e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
I W .0/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 0 1
1 1 2
1 2 4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 0 0
1 1 1
1 2 3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
1 1
2 3
ˇ
ˇ
ˇ
ˇ
D
1:
(b) W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
cos 2x si n 2x e
3x
2 sin 2x 2 cos 2x 3e
3x
4 cos 2x 4 sin 2x 9e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
IW .0/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 0 1
0 2 3
4 0 9
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 0 0
0 2 3
4 0 13
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
2 3
0 13
ˇ
ˇ
ˇ
ˇ
D
26:
(c) W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
cos x e
x
sin x e
x
e
x
.cos x C si n x/ e
x
.cos x sin x/ e
x
2e
x
sin x 2e
x
cos x e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
IW.0/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 0 1
1 1 1
0 2 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 0 1
0 1 2
0 2 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
1 2
2 1
ˇ
ˇ
ˇ
ˇ
D 5:
(d) W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 x x
2
e
x
0 1 2x e
x
0 0 2 e
x
0 0 0 e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
I W .0/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 0 0 1
0 1 0 1
0 0 2 1
0 0 0 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 1:
(e) W.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
cos x sin x
e
x
e
x
sin x cos x
e
x
e
x
cos x si n x
e
x
e
x
sin x cos x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
I
W.0/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 0
1 1 0 1
1 1 1 0
1 1 0 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 0
1 1 0 1
1 1 1 0
0 0 0 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1
1 1 0
1 1 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1
1 1 0
0 0 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 4
ˇ
ˇ
ˇ
ˇ
1 1
1 1
ˇ
ˇ
ˇ
ˇ
D 8:
(f) W .x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
cos x sin x e
x
cos x e
x
sin x
sin x cos x e
x
.cos x sin x/ e
x
.cos x C si n x/
cos x si n x 2e
x
sin x 2e
x
cos x
sin x cos x e
x
.2 cos x C 2 sin x/ e
x
.2 cos x 2 sin x/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
I
Section 9.2
Higher Order Constant Coefficient Ho mogeneous Equations
173
W.0/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 0 1 0
0 1 1 1
1 0 0 2
0 1 2 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 0 1 0
0 1 1 1
0 0 1 2
0 1 2 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1
0 1 2
1 2 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1
0 1 2
0 1 3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1
0 1 2
0 0 5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 5:
9.2.40. (a ) Si nce y D Q
1
.D/P
1
.D/y C Q
2
.D/P
2
.D/y and P
1
.D/y D P
2
.D/y D 0, i t follows that
y D 0.
(b) Suppose that (A) a
1
u
1
CCa
r
u
r
Cb
1
v
1
CCb
s
v
s
D 0, wher e a
1
; : : : ; a
r
and b
1
; : : : ; b
s
are
constants. Denote u D a
1
u
1
C C a
r
u
r
and v D b
1
v
1
C C b
s
v
s
. Then (B) P
1
.D/u D 0 and (C)
P
2
.D/v D 0. Since uCv D 0, P
2
.D/.uCv/ D 0. Therefore,0 D P
2
.D/.uCv/ D P
2
.D/uCP
2
.D/v.
Now (C) implies that P
2
.D/u D 0. This, (B), and (a) imply that u D a
1
u
1
C C a
r
u
r
D 0, so
a
1
D D a
r
D 0, since u
1
; : : : ; u
r
are linearly independent. Now (A) reduces to b
1
v
1
CCb
s
v
s
D 0,
so b
1
D c D b
s
D 0, since v
1
; : : : ; v
s
are linearly independent. Therefore,u
1
; : : : ; u
r
; v
1
; : : : ; v
r
are
linearly independent.
(c) It suffices to show that fy
1
; y
2
; : : : ; y
n
gis linearly independent. Suppose that c
1
y
1
CCc
n
y
n
D 0.
We may assume that y
1
; : : : ; y
r
are linearly independent solutions of p
1
.D/y D 0 and y
rC1
; : : : ; y
n
are
solutions of P
2
.D/ D p
2
.D/ p
k
.D/y D 0. Since p
1
.r/ and P
2
.r/ have no common factors, (b)
implies that (A) c
1
y
1
C C c
r
y
r
D 0 and (B) c
rC1
y
rC1
C C c
n
y
n
D 0. Now (A) implies that
c
1
D D c
r
D 0, since y
1
; : : : ; y
r
are linearly independent. If k D 2, then y
rC1
; : : : ; y
n
are linearly
independent, so c
rC1
D D c
n
D 0, and the proof is complete. If k > 2 repeat this argument, starting
from (B), with p
1
replaced by p
2
, and P
2
replaced by P
3
D p
3
p
n
.
9.2.42. (a)
.cos A C i sin A/.cos B C i sin B/ D .cos A cos B sin A sin B/
C.cos A sin B C sin A cos B/
D cos.A C B/ C i sin.A CB/:
(b) Obvious for n D 0. If n D 1 write
1
cos C i sin
D
1
cos C i sin
cos i sin
cos i sin
D
cos i sin
cos
2
C sin
2
D cos i sin D cos./ C i sin./:
(d) If n is a negative integer, then (B) .cos C i sin /
n
D
1
.cos C i sin /
jnj
. From th e hint, (C)
1
.cos C i sin /
jnj
D .cos i sin /
jnj
D .cos./ C i sin.//
jnj
. Replacing by and n by
jnj in (A) shows that (D) .cos. / C i sin.//
jnj
D cos.jnj/ C i sin.jnj/. Since jnj D n, (E)
cos.jnj/ C i sin.jnj/ D cos n C i sin n. Now (B), (C), (D), and (E) imply (A).
(e) From (A), ´
n
k
D cos 2k C i sin 2k D 1 and
n
k
D cos.2k C 1/ C i sin.2k C 1/ D cos.2k C
1/ D cos D 1.
(f) From (e),
1=n
´
0
; : : : ;
1=n
´
n1
are all zeros of ´
n
. Si nce they are distinct numbers, ´
n
has
the stated factoriztion.
174 Chapter 9
Linear Higher Order Equations
From (e),
1=n
0
; : : : ;
1=n
n1
are all zeros of ´
n
C . Since they are distinct numbers, ´
n
C has
the stated factoriztion.
9.2.43. (a) p.r/ D r
3
1 D .r ´
0
/.r ´
1
/.r ´
2
/ where ´
k
D cos
2k
3
C i sin
2k
3
, k D 0; 1; 2.
Hence, ´
0
D 1, ´
1
D
1
2
Ci
p
3
2
, and ´
2
D
1
2
i
p
3
2
. Therefore, p.r/ D .r 1/
r C
1
2
2
C
3
4
!
,
so
(
e
x
; e
x=2
cos
p
3
2
x
!
; e
x=2
sin
p
3
2
x
!)
is a fundamental set of solutions.
(b) p.r/ D r
3
C1 D .r
0
/.r
1
/.r
2
/ where
k
D cos
.2k C 1/
3
Ci sin
.2k C 1/
3
, k D 0; 1; 2.
Hence,
0
D
1
2
C i
p
3
2
,
1
D 1
2
D
1
2
i
p
3
2
. Therefore, p.r/ D .r C 1/
r
1
2
2
C
3
4
!
, so
(
e
x
; e
x=2
cos
p
3
2
x
!
; e
x=2
sin
p
3
2
x
!)
is a fundamental set of solutions.
(c) p.r/ D r
4
C64 D .r 2
p
2
0
/.r 2
p
2
1
/.r 2
p
2
2
/.r 2
p
2
3
/, where
k
D cos
.2k C 1/
4
C
i sin
.2k C 1/
4
, k D 0; 1; 2; 3. Therefore,
0
D
1 Ci
p
2
,
1
D
1 C i
p
2
,
2
D
1 i
p
2
, and
3
D
1 i
p
2
,
so p.r/ D ..r 2/
2
C 4/..r C 2/
2
C 4/ and fe
2x
cos 2x; e
2x
sin 2x; e
2x
cos 2x; e
2x
sin 2xg is a
fundamental set of solutions.
(d) p.r/ D r
6
1 D .r ´
0
/.r ´
1
/.r ´
2
/.r ´
3
/.r ´
4
/.r ´
5
/ where ´
k
D cos
2k
6
Ci sin
2k
6
,
k D 0; 1; 2; 3; 4; 5. Therefore, ´
0
D 1, ´
1
D
1
2
C i
p
3
2
, ´
2
D
1
2
C i
p
3
2
, ´
3
D 1, ´
4
D
1
2
i
p
3
2
,
and ´
5
D
1
2
i
p
3
2
, so p.r/ D .r 1/.r C 1/
r
1
2
2
C
3
4
!
r C
1
2
2
C
3
4
!
and
(
e
x
; e
x
; e
x=2
cos
p
3
2
x
!
; e
x=2
sin
p
3
2
x
!
; e
x=2
cos
p
3
2
x
!
; e
x=2
sin
p
3
2
x
!)
is a funda-
mental set of solutions.
(e) p.r/ D r
6
C 64 D .r 2
0
/.r 2
1
/.r 2
2
/.r 2
3
/.r 2
4
/.r 2
5
/ where
k
D
cos
.2k C 1/
6
Ci sin
.2k C 1/
6
, k D 0; 1; 2; 3; 4; 5. Therefore,
0
D
p
3
2
C
i
2
,
1
D i,
2
D
p
3
2
C
i
2
,
3
D
p
3
2
i
2
,
4
D i, and
5
D
p
3
2
i
2
, so p.r/ D .r
2
C4/..r
p
3/
2
C1/..r C
p
3/
2
C1/ and
fcos 2x; sin 2x; e
p
3x
cos x; e
p
3x
sin x; e
p
3x
cos x; e
p
3x
sin xg is a fundamental set of solutions.
(f) p.r/ D .r 1/
6
1 D .r 1´
0
/.r1´
1
/.r1´
2
/.r1´
3
/.r1´
4
/.r1´
5
/ wh ere ´
k
D
cos
2k
6
C i sin
2k
6
, k D 0; 1; 2; 3; 4; 5. Therefore, ´
0
D 1, ´
1
D
1
2
C i
p
3
2
, ´
2
D
1
2
C i
p
3
2
, ´
3
D
1, ´
4
D
1
2
i
p
3
2
, and ´
5
D
1
2
i
p
3
2
, so p.r/ D r .r 2/
r
3
2
2
C
3
4
!
r
1
2
2
C
3
4
!
and
(
1; e
2x
; e
3x=2
cos
p
3
2
x
!
; e
3x=2
sin
p
3
2
x
!
; e
x=2
cos
p
3
2
x
!
; e
x=2
sin
p
3
2
x
!)
is a funda-
mental set of solutions.
(g) p.r/ D r
5
C r
4
C r
3
C r
2
C r C 1 D
r
6
1
r 1
. Therefore, from the solution of (d) p.r/ D
Section 9.3
Undetermined Coefficients for Higher Order Equations
175
.r C 1/
r
1
2
2
C
3
4
!
r C
1
2
2
C
3
4
!
and
(
e
x
; e
x=2
cos
p
3
2
x
!
; e
x=2
sin
p
3
2
x
!
; e
x=2
cos
p
3
2
x
!
; e
x=2
sin
p
3
2
x
!)
is a fundamen-
tal set of solutions.
9.3 UNDETERMINED COEFFICIENTS FOR HIGHER ORDER EQUATIONS
9.3.2. If y D u
3x
, then y
000
2y
00
5y
0
C 6y D e
3x
Œ.u
000
11u
00
C 34u
0
24u/ 2.u
00
6u
0
C
9u/ 5.u
0
3u/ C 6u D e
3x
.u
000
11u
00
C 34u
0
24u/. Let u
p
D A C Bx C Cx
2
, where
.24A C 34B 22C / C .24B C 68C /x 24Cx
2
D 32 23x C 6x
2
. Then C D 1=4, B D 1=4,
A D 3=4 and y
p
D
e
3x
4
.3 x C x
2
/.
9.3.4. I f y D ue
2x
, then y
000
C 3y
00
y
0
3y D e
2x
Œ.u
000
6u
00
C12u
0
8u/ C3.u
00
4u
0
C4u/
.u
0
2u/ 3u D e
2x
.u
000
3u
00
u
0
C 3u/. Let u
p
D A C Bx C Cx
2
, where .3A B 6C / C
.3B 2C /x C 3Cx
2
D 2 17x C 3x
2
. Then C D 1, B D 5, A D 1, and y
p
D e
2x
.1 5x C x
2
/.
9.3.6. If y D ue
x
, then y
000
Cy
00
2y D e
x
Œ.u
000
C3u
00
C3u
0
Cu/C.u
00
C2u
0
Cu/2u D e
x
.u
000
C4u
00
C
5u
0
/. Let u
p
D x.ACBx CCx
2
/, where .5AC8B C6C /C.10B C24C /xC15Cx
2
D 14C34xC15x
2
.
Then C D 1, B D 1, A D 0, and y
p
D x
2
e
x
.1 C x/.
9.3.8. If y D ue
x
, then y
000
y
00
y
0
Cy D e
x
Œ.u
000
C3u
00
C3u
0
Cu/.u
00
C2u
0
Cu/.u
0
Cu/Cu D
e
x
.u
000
C 2u
00
/. Let u
p
D x
2
.A C Bx/ where .4A C 6B/ C 12Bx D 7 C 6x. Then B D 1=2, A D 1,
and y
p
D
x
2
e
x
2
.2 C x/.
9.3.10. If y D ue
3x
, then y
000
5y
00
C3y
0
C9y D e
3x
Œ.u
000
C9u
00
C27u
0
C27u/5.u
00
C6u
0
C9u/C3.u
0
C
3u/C9u D e
3x
.u
000
C4u
00
/. Let u
p
D x
2
.ACBxCCx
2
/, where .8AC6B/C.24B C24C /xC 48Cx
2
D
22 48x
2
. Then C D 1, B D 1, A D 2, and y
p
D x
2
e
3x
.2 C x x
2
/.
9.3.12. If y D ue
x=2
, then 8y
000
12y
00
C6y
0
y D e
x=2
Œ8.u
000
C3u
00
=2 C3u
0
=4 Cu=8/ 12.u
00
Cu
0
C
u=4/ C 6.u
0
Cu=2/ u D 8e
x=2
u
000
, so u
000
D
1 C 4x
8
. Integrating three times and taking the constants
of in tegration to be zero yields u
p
D
x
3
48
.1 C x/. Therefore, y
p
D
x
3
e
x=2
48
.1 C x/.
9.3.14. If y D ue
2x
, then y
.4/
C3y
000
Cy
00
3y
0
2y D e
2x
Œ.u
.4/
C8u
000
C24u
00
C32u
0
C16u/C3.u
000
C
6u
00
C12u
0
C8u/C.u
00
C4u
0
C4u/ 3.u
0
C2u/ 2u D e
2x
.u
.4/
C11u
000
C43u
00
C69u
0
C36u/. Let
u
p
D A CBx where .36A C69B/ C36Bx D 33 36x. Then B D 1, A D 1, and y
p
D e
2x
.1 x/.
9.3.16. If y D ue
x
, then 4y
.4/
11y
00
9y
0
2y D e
x
Œ4.u
.4/
C 4u
000
C 6u
00
C 4u
0
C u/ 11.u
00
C
2u
0
C u/ 9.u
0
C u/ 2u D e
x
.4u
.4/
C 16u
000
C 13u
00
15u
0
18u/. Let u
p
D A C Bx where
.18A C 15B/ 18Bx D 1 C 6x. Then B D 1=3, A D 1=3, and y
p
D
e
x
3
.1 x/.
9.3.18. If y D ue
x
, then y
.4/
4y
000
C6y
00
4y
0
C2y D e
x
Œ.u
.4/
C4u
000
C6u
00
C4u
0
Cu/4.u
000
C3u
00
C
3u
0
Cu/ C6.u
00
C2u
0
Cu/ 4.u
0
Cu/ C2u D e
x
.u
.4/
Cu/. Let u
p
D A CBx CCx
2
CDx
3
CEx
4
where .A C 24E/ C Bx C Cx
2
C Dx
3
C Ex
4
D 24 C x C x
4
. Then E D 1 D D 0, C D 0 B D 1,
A D 0, and y
p
D xe
x
.1 C x
3
/.
9.3.20. If y D ue
2x
, then y
.4/
C y
000
2y
00
6y
0
4y D e
2x
Œ.u
.4/
C 8u
000
C 24u
00
C 32u
0
C 16u/ C
.u
000
C6u
00
C12u
0
C8u/2.u
00
C4u
0
C4u/ 6.u
0
C2u/ 4u D e
2x
.u
.4/
C9u
000
C28u
00
C30u
0
/. Let
176 Chapter 9
Linear Higher Order Equations
u
p
D x.ACBx CCx
2
/ where .30AC56B C54C /C.60B C168C/x C90Cx
2
D .4C28x C15x
2
/.
Then C D 1=6, B D 0, A D 1=6, and y
p
D
xe
2x
6
.1 x
2
/.
9.3.22. If y D ue
x
, then y
.4/
5y
00
C4y D e
x
Œ.u
.4/
C4u
000
C6u
00
C4u
0
Cu/5.u
00
C2u
0
Cu/C4u D
e
x
.u
.4/
C 4u
000
C u
00
6u
0
/. Let u
p
D x.A C Bx C Cx
2
/ w here .6A C 2B C 24C / C .12B C
6C /x 18Cx
2
D 3 C x 3x
2
, so C D 1=6, B D 0, A D 1=6. Then y
p
D
xe
x
6
.1 C x
2
/.
9.3.24. If y D ue
2x
, then y
.4/
3y
000
C 4y
0
D e
2x
Œ.u
.4/
C 8u
000
C 24u
00
C 32u
0
C 16u/ 3.u
000
C
6u
00
C 12u
0
C 8u/ C 4.u
0
C 2u/ D e
2x
.u
.4/
C 5u
000
C 6u
00
/. Let u
p
D x
2
.A C Bx C Cx
2
/ w here
.12A C 30B C 24C / C .36B C 120C /x C 72Cx
3
D 15 C 26x C 12x
2
. Then C D 1=6, B D 1=6,
A D 1=2, and y
p
D
x
2
e
2x
6
.3 C x C x
2
/.
9.3.26. If y D ue
x
, then 2y
.4/
5y
000
C3y
00
Cy
0
y D e
x
Œ2.u
.4/
C4u
000
C6u
00
C4u
0
Cu/ 5.u
000
C
3u
00
C3u
0
Cu/ C3.u
00
C2u
0
Cu/ C.u
0
Cu/ u D e
x
.2u
.4/
C3u
000
/. Let u
p
D x
3
.A CBx/, where
.18A C 48B/ C 72Bx D 11 C 12x. Then B D 1=6, A D 1=6, and y
p
D
x
3
e
x
6
.1 C x/.
9.3.28. If y D ue
2x
, then y
.4/
7y
000
C 18y
00
20y
0
C 8y D e
2x
Œ.u
.4/
C 8u
000
C 24u
00
C 32u
0
C
16u/ 7.u
000
C 6u
00
C 12u
0
C 8u/ C 18.u
00
C 4u
0
C 4u/ 20.u
0
C 2u/ C 8u D e
2x
.u
.4/
C u
000
/. Let
u
p
D x
3
.A C Bx C Cx
2
/ where .6A C 24B/ C .24B C 120C /x C 60Cx
2
D 3 8x 5x
2
. Then so
C D 1=12 B D 1=12, A D 1=6, and y
p
D
x
3
e
2x
12
.2 C x x
2
/.
9.3.30. If y D ue
x
, then y
000
Cy
00
4y
0
4y D e
x
Œ.u
000
3u
00
C3u
0
u/ C.u
00
2u
0
Cu/ 4.u
0
u/ 4u D e
x
.u
000
2u
00
3u
0
/. Let u
p
D .A
0
C A
1
x/ cos 2x C .B
0
C B
1
x/ sin 2x, where
8A
1
14B
1
D 22
14A
1
C 8B
1
D 6
8A
0
14B
0
15A
1
8B
1
D 1
14A
0
C8B
0
C 8A
1
15B
1
D 1:
Then A
1
D 1, B
1
D 1, A
0
D 1, B
0
D 1, and y
p
D e
x
Œ.1 x/ cos 2x C .1 C x/ sin 2x.
9.3.32. If y D ue
x
, then y
000
2y
00
Cy
0
2y D e
x
Œ.u
000
C3u
00
C3u
0
Cu/2.u
00
C2u
0
Cu/C.u
0
Cu/2u D
e
x
.u
000
C u
00
2u/. Let u
p
D .A
0
C A
1
x C A
2
x
2
/ cos 2x C .B
0
C B
1
x CB
2
x
2
/ sin 2x where
6A
2
8B
2
D 4
8A
2
6B
2
D 3
6A
1
8B
1
24A
2
C 8B
2
D 5
8A
1
6B
1
8A
2
24B
2
D 5
6A
0
8B
0
12A
1
C 4B
1
C 2A
2
C 12B
2
D 9
8A
0
6B
0
4A
1
12B
1
12A
2
C 2B
2
D 6:
Then A
2
D 0, B
2
D 1=2; A
1
D 1=2, B
1
D 1=2; A
0
D 1=1, B
0
D 1=2; and y
p
D
e
x
2
Œ.1 Cx/ cos 2x C
.1 x C x
2
/ sin 2x.
9.3.34. If y D ue
x
, then y
000
y
00
C 2y D e
x
Œ.u
000
C 3u
00
C 3u
0
C u/ .u
00
C 2u
0
C u/ C 2u D
e
x
.u
000
C 2u
00
C u
0
C 2u/. Since cos x and sin x satisfy u
000
C 2u
00
C u
0
C 2u D 0, let u
p
D xŒ.A
0
C
Section 9.3
Undetermined Coefficients for Higher Order Equations
177
A
1
x/ cos x C .B
0
C B
1
x/ sin x where
4A
1
C 8B
1
D 4
8A
1
4B
1
D 12
2A
0
C 4B
0
C 4A
1
C 6B
1
D 20
4A
0
2B
0
6A
1
C 4B
1
D 12:
Then A
1
D 1, B
1
D 1; A
0
D 1, B
0
D 3; and y
p
D xe
x
Œ.1 C x/ cos x C .3 C x/ sin x.
9.3.36. If y D ue
3x
, then D e
3x
Œ.u
000
C 9u
00
C 27u
0
C 27u/ 6.u
00
C 6u
0
C 9u/ C 18.u
0
C 3u/ D
e
3x
.u
000
C 3u
00
C 9u
0
C 27u/. Since cos 3x and sin 3x satisfy u
000
C 3u
00
C 9u
0
C 27u D 0, let u
p
D
xŒ.A
0
C A
1
x/ cos 3x C .B
0
C B
1
x/ sin 3x where
36A
1
C 36B
1
D 3
36A
1
36B
1
D 3
18A
0
C 18B
0
C 6A
1
C 18B
1
D 2
18A
0
18B
0
18A
1
C 6B
1
D 3:
Then A
1
D 1=12, B
1
D 0; A
0
D, B
0
D 1=12; and y
p
D
xe
3x
12
.x cos 3x C sin 3x/.
9.3.38. If y D ue
x
, then y
.4/
3y
000
C 2y
00
C 2y
0
4y D e
x
Œ.u
.4/
C 4u
000
C 6u
00
C 4u
0
C u/
3.u
000
C 3u
00
C 3u
0
C u/ C 2.u
00
C 2u
0
C u/ C 4.u
0
C u/ C u D e
x
.u
.4/
C u
000
u
00
C u
0
2u/. Let
u
p
D A cos 2x C B sin 2x where 18A 6B D 2 and 6A C 18B D 1. Then A D 1=12, B D 1=12,
and y
p
D
e
x
12
.cos 2x sin 2x/.
9.3.40. If y D ue
x
, then y
.4/
C 6y
000
C 13y
00
C 12y
0
C 4y D e
x
Œ.u
.4/
4u
000
C 6u
00
4u
0
C
u/ C 6.u
000
3u
00
C 3u
0
u/ C 13.u
00
2u
0
C u/ C 12u
0
u/ C 4u D e
x
.u
.4/
C 2u
000
C u
00
/. Let
u
p
D .A
0
C A
1
x/ cos x C .B
0
C B
1
x/ sin x where
2B
1
D 1
2A
1
D 1
2B
0
6A
1
2B
1
D 4
2A
0
C 2A
1
6B
1
D 5:
Then A
1
D 1=2, B
1
D 1=2, A
0
D 1=2, B
0
D 1, and y
p
D
e
x
2
Œ.1 C x/ cos x C .2 x/ sin x.
9.3.42. If y D ue
x
, then y
.4/
5y
000
C13y
00
19y
0
C10y D e
x
Œ.u
.4/
C4u
000
C6u
00
C4u
0
Cu/5.u
000
C
3u
00
C3u
0
Cu/ C13.u
00
C2u
0
Cu/ 19.u
0
Cu/ C10u D e
x
.u
.4/
u
000
C4u
00
4u
0
/. Since cos 2x
and sin 2x satisfy u
.4/
u
000
C 4u
00
4u
0
D 0, let u
p
D x.A cos 2x C B sin 2x/ where 8A 16B D 1
and 16A C 8B D 1. Then A D 3=40, B
0
D 1=40, and y
p
D
xe
x
40
.3 cos 2x sin 2x/.
9.3.44. If y D ue
x
, then y
.4/
5y
000
C13y
00
19y
0
C10y D e
x
Œ.u
.4/
C4u
000
C6u
00
C4u
0
Cu/5.u
000
C
3u
00
C3u
0
Cu/ C13.u
00
C2u
0
Cu/ 19.u
0
Cu/ C10u D e
x
.u
.4/
u
000
C4u
00
4u
0
/. Since cos 2x
and sin 2x satisfy u
.4/
u
000
C 4u
00
4u
0
D 0, l et u
p
D xŒ.A
0
C A
1
x/ cos 2x C .B
0
C B
1
x/ sin 2x/
where
16A
1
32B
1
D 8
32A
1
C 16B
1
D 4
8A
0
16B
0
40A
1
12B
1
D 7
16A
0
C8B
0
C 12A
1
40B
1
D 8:
178 Chapter 9
Linear Higher Order Equations
Then A
1
D 0, B
1
D 1=4; A
0
D 0, B
0
D 1=4, and y
p
D
xe
x
4
.1 C x/ sin 2x.
9.3.46. If y D ue
2x
, then y
.4/
8y
000
C32y
00
64y
0
C64y C4y D e
2x
Œ.u
.4/
C8u
000
C24u
00
C32u
0
C
16u/8.u
000
C6u
00
C12u
0
C8u/C32.u
00
C4u
0
C4u/64.u
0
C2u/C64u D e
2x
.u
.4/
C8u
00
C16u/. Since
cos 2x, sin 2x, x cos 2x, and x sin 2x satisfy u
.4/
C 8u
00
C 16u D 0, let u
p
D x
2
.A cos 2x C B sin 2x/
where 32A D 1 and 32B D 1. Then A D 1=32, B D 1=32, and y
p
D
x
2
e
2x
32
.cos 2x sin 2x/.
9.3.48. Find par ticular solutions of (a) y
000
4y
00
C5y
0
2y D 4e
x
, (b) y
000
4y
00
C5y
0
2y D e
2x
,
and (c) y
000
4y
00
C 5y
0
2y D 2 cos x C 4 sin x.
(a) I f y D ue
x
, then y
000
4y
00
C5y
0
2y D e
x
Œ.u
000
C3u
00
C3u
0
Cu/4.u
00
C2u
0
Cu/C5.u
0
Cu/2u D
e
x
.u
000
u
00
/. Let u
1p
D Ax
2
where 2A D 4. Then A D 2, and y
1p
D 2x
2
e
x
.
(b) If y D ue
2x
, then y
000
4y
00
C 5y
0
2y D e
2x
Œ.u
000
C 6u
00
C 12u
0
C8u/ 4.u
00
C 4u
0
C 4u/ C
5.u
0
C 2u/ 2u D e
2x
.u
000
C 2u
00
C u
0
/. Let u
2p
D x. Then y
2p
D xe
2x
.
(c) If y
3p
D A cos xCB sin x, then y
000
3p
4y
00
3p
C5y
0
3p
2y
3p
D .2AC4B/ cos xC.4AC2B/ sin x D
2 cos x C 4 sin x if A D 1 and B D 0, so y
3p
D cos x.
From the principle of superposition, y
p
D 2x
2
e
x
C xe
2x
cos x.
9.3.50. Find particul ar solutions of (a) y
000
y
0
D 2.1 Cx/, (b) y
000
y
0
D 4e
x
, (c) y
000
y
0
D 6e
x
,
and (d) y
000
y
0
D 96e
3x
(a) Let y
1p
D x.A CBx/. Then y
000
1p
y
0
1p
D A2Bx D 2.1Cx/ if A D 2 and B D 1; therefore
y
1p
D 2x C 2x
2
.
(b) If y D ue
x
, then y
000
y
0
D e
x
Œ.u
000
C 3u
00
C 3u
0
C u/ .u
0
C u/ D e
x
.u
000
C 3u
00
C 2u
0
/. Let
u
2p
D 4x. Then y
2p
D 4xe
x
.
(c) If y D ue
x
, then y
000
y
0
D e
x
Œ.u
000
3u
00
C3u
0
u/ .u
0
u/ D e
x
.u
000
3u
00
C2u
0
/. Let
u
2p
D 3x. Then y
2p
D 6xe
x
.
(d) Since e
3x
does not satisfy the complementary equation, let y
4p
D Ae
3x
. Then y
000
4p
y
0
4p
D
24Ae
3x
. Let A D 4; th en y
4p
D 4e
4x
.
From the principle of superposition, y
p
D 2x C x
2
C 2xe
x
3xe
x
C 4e
3x
9.3.52. Find particular solutions of (a) y
000
C 3y
00
C 3y
0
C y D 12e
x
and (b) y
000
C 3y
00
C 3y
0
C y D
9 cos 2x 13 sin 2x.
(a) If y D ue
2x
, then y
000
C 3y
00
C 3y
0
C y D e
2x
Œ.u
000
3u
00
C 3u
0
u/ C 3.u
00
2u
0
C u/ C
3.u
0
u/ C u D e
x
u
000
. Let u
000
1p
D 12. Integrating three times and taking t he con stants of integration
to be zero yields u
1p
D 2x
3
. Therefore,y
1p
D 2x
3
.
(b) Let y
2p
D A cos 2x C B sin 2x where 11A 2B D 9 and 2A 11B D 13. Then A D 1,
B D 1, and y
2p
D cos 2x C sin 2x.
From the principle of superposition, y
p
D 2x
3
e
2x
cos 2x Csin 2x.
9.3.54. Find par ticular solutions of (a) y
.4/
5y
00
C4y D 12e
x
, (b) y
.4/
5y
00
C4y D 6e
x
, and (c)
y
.4/
5y
00
C 4y D 10 cos x.
(a) If y D ue
x
, then y
.4/
5y
00
C4y D e
x
Œ.u
.4/
C4u
000
C6u
00
C4u
0
Cu/ 5.u
00
C2u
0
Cu/ C4u D
e
x
.u
.4/
C 4u
000
C u
00
6u
0
/. Let u
1p
D 2x. Then y
1p
D 2xe
x
.
(b) If y D ue
x
, then y
.4/
5y
00
C4y D e
x
Œ.u
.4/
4u
000
C6u
00
4u
0
Cu/5.u
00
2u
0
Cu/C4u D
e
x
.u
.4/
4u
000
Cu
00
C 6u
0
/. Let u
2p
D x. Then y
2p
D xe
x
.
(c) Let y
3p
D A cos xCB sin x where 10A D 10 and 10B D 0. Then A D 1, B D 0, and y
3p
D cos x.
From the principle of superposition, y
p
D 2xe
x
C xe
x
C cos x.
9.3.56. Find particul ar solutions of (a) y
.4/
C2y
000
3y
00
4y
0
C4y D 2e
x
.1 Cx/ and (b) y
.4/
C2y
000
3y
00
4y
0
C 4y D e
2x
.
Section 9.3
Undetermined Coefficients for Higher Order Equations
179
(a) If y D ue
x
, then y
.4/
C 2y
000
3y
00
4y
0
C 4y D e
x
Œ.u
.4/
C 4u
000
C 6u
00
C 4u
0
C u/ C 2.u
000
C
3u
00
C3u
0
Cu/ 3.u
00
C2u
0
Cu/ 4.u
0
Cu/ C4u D e
x
.u
.4/
C6u
000
C9u
00
/. Let u
1p
D x
2
.A CBx/
where .18A C 36B/ C 54Bx D 2 C 2x. Then B D 1=27, A D 1=27, and y
1p
D
x
2
27
.1 C x/e
x
.
(b) If y D ue
2x
, then y
.4/
C 2y
000
3y
00
4y
0
C4y D e
2x
Œ.u
.4/
8u
000
C24u
00
32u
0
C16u/ C
2.u
000
6u
00
C 12u
0
8u/ 3.u
00
4u
0
C 4u/ 4.u
0
2u/ C 4u D e
2x
.u
.4/
6u
000
C 9u
00
/. Let
u
2p
D Ax
2
where 18A D 1. Then A D 1=18 and y
p
D
x
2
18
e
2x
.
From the principle of superposition, y
p
D
x
2
54
Œ.2 C 2x/e
x
C 3e
2x
.
9.3.58. Find part icular sol utions of (a) y
.4/
C 5y
000
C 9y
00
C 7y
0
C 2y D e
x
.30 C 24x/ and (b)
y
.4/
C 5y
000
C 9y
00
C 7y
0
C 2y D e
2x
.
(a) If y D ue
x
, then y
.4/
C5y
000
C9y
00
C7y
0
C2y D e
x
Œ.u
.4/
4u
000
C6u
00
4u
0
Cu/ C5.u
000
3u
00
C3u
0
u/ C9.u
00
2u
0
Cu/ C7.u
0
u/ C2u D e
x
.u
.4/
Cu
000
/. Let u
1p
D x
3
.A CBx/ where
.6A C 24B/ C 24Bx D 30 C 24x. The B D 1, A D 1, and y
1p
D x
3
.1 C x/e
x
.
(b) If y D ue
2x
, then y
.4/
C5y
000
C9y
00
C7y
0
C2y D e
2x
Œ.u
.4/
8u
000
C24u
00
32u
0
C16u/ C
5.u
000
6u
00
C12u
0
8u/ C9.u
00
4u
0
C4u/ C7.u
0
2u/ C2u D e
2x
.u
.4/
3u
000
C3u
00
u
0
/. Let
u
2p
D x. Then y
2p
D xe
2x
.
From the principle of superposition, y
p
D x
3
.1 C x/e
x
C xe
2x
.
9.3.60. If y D ue
2x
, then y
000
y
00
y
0
Cy D e
2x
Œ.u
000
C6u
00
C12u
0
C8u/.u
00
C4u
0
C4u/.u
0
C2u/C
u D e
2x
.u
000
C5u
00
C7u
0
C3u/. Let u
p
D A CBx, where .3A C7B/ C3x D 10 C 3x. Then B D 1,
A D 1 and y
p
D e
2x
.1 C x/. Since p.r/ D .r C 1/.r 1/
2
, y D e
2x
.1 C x/ C c
1
e
x
C e
x
.c
2
C c
3
x/
9.3.62. If y D ue
2x
, then y
000
6y
00
C11y
0
6y D e
2x
Œ.u
000
C6u
00
C12u
0
C8u/6.u
00
C4u
0
C4u/C 11.u
0
C
2u/6u D e
2x
.u
000
u
0
/. Let u
p
D x.ACBx CCx
2
/ where .AC6C/2Bx 3Cx
2
D 54x 3x
2
.
Then C D 1, B D 2, A D 1, and y
p
D xe
2x
.1 C x/
2
. Since p.r/ D .r 1/.r 2/.r 3/,
y D xe
2x
.1 C x/
2
Cc
1
e
x
C c
2
e
2x
C c
3
e
3x
.
9.3.64. If y D ue
x
, t hen y
000
3y
00
C 3y
0
y D e
x
Œ.u
000
C 3u
00
C 3u
0
C u/ 3.u
00
C 2u
0
C u/ C
3.u
0
Cu/ u D e
x
u
000
. Let u
000
D 1 Cx. Integrating three times and taking the constants of integration
to be zero yields u D
x
3
24
.4 C x/. Therefore, y
p
D
x
3
e
x
24
.4 C x/. Since p.r/ D .r 1/
3
, y D
x
3
e
x
24
.4 C x/ C e
x
.c
1
C c
2
x C c
3
x
2
/.
9.3.66. If y D ue
2x
, then y
000
C2y
00
y
0
2y D e
2x
Œ.u
000
6u
00
C12u
0
8u/ C2.u
00
4u
0
C4u/
.u
0
2u/ 2u D e
2x
.u
000
4u
00
C 3u
0
/. Let u
p
D .A
0
C A
1
x/ cos x C .B
0
C B
1
x/ sin x where
4A
1
C 2B
1
D 2
2A
1
C 4B
1
D 9
4A
0
C 2B
0
8B
1
D 23
2A
0
C 4B
0
C8A
1
D 8:
Then A
1
D 1=2, B
1
D 2; A
0
D 1, B
0
D 3=2, and y
p
D e
2x
1 C
x
2
cos x C
3
2
2x
sin x
.
Since p.r/ D .r 1/.r C 1/.r C2/, y D e
2x
1 C
x
2
cos x C
3
2
2x
sin x
Cc
1
e
x
Cc
2
e
x
C
c
3
e
2x
.
180 Chapter 9
Linear Higher Order Equations
9.3.68. If y D ue
x
, then y
.4/
4y
000
C14y
00
20y
0
C25y D e
x
Œ.u
.4/
C4u
000
C6u
00
C4u
0
Cu/4.u
000
C
3u
00
C3u
0
Cu/ C14.u
00
C2u
0
Cu/ 20.u
0
Cu/ C25u D e
x
.u
.4/
C8u
00
C16u/. Since cos 2x, sin 2x,
x cos 2x, and x sin 2x satisfy u
.4/
C8u
00
C16u D 0, let u
p
D x
2
Œ.A
0
CA
1
x/ cos 2xC.B
0
CB
1
x/ sin 2x
where
96A
1
D 6
96B
1
D 0
32A
0
C 48B
1
D 2
48A
1
32B
0
D 3:
Then A
1
D 1=16, B
1
D 0; A
0
D 1=16, B
0
D 0, and y
Œ
D
x
2
e
x
16
.1 C x/ cos 2x. Since p.r/ D
Œ.r 1/
2
C 1
2
, y D
x
2
e
x
16
.1 C x/ cos 2x C e
x
Œ.c
1
C c
2
x/ cos 2x C .c
3
Cc
4
x/ sin 2x.
9.3.70. If y D ue
x
, then y
000
y
00
y
0
C y D e
x
Œ.u
000
3u
00
C 3u
0
u/ .u
00
2u
0
C u/ .u
0
u/ C u D e
x
.u
000
4u
00
C 4u
0
/. Let u
p
D x.A C Bx/, where .4A 8B/ C 8Bx D 4 C 8x.
Then B D 1, A D 1, and y
p
D x.1 C x/e
x
. Since p.r/ D .r C 1/.r 1/
2
the general solution is
y D x.1 C x/e
x
C c
1
e
x
C c
2
e
x
C c
3
xe
x
. Therefore,
2
4
y
y
0
y
00
3
5
D
2
4
x.1 C x/e
x
e
x
.x
2
x 1/
e
x
.x
2
3x/
3
5
C
2
4
e
x
e
x
xe
x
e
x
e
x
e
x
.x C 1/
e
x
e
x
e
x
.x C 2/
3
5
2
4
c
1
c
2
c
3
3
5
:
Setting x D 0 and imposing the initial conditions yields
2
4
2
0
0
3
5
D
2
4
0
1
0
3
5
C
2
4
1 1 0
1 1 1
1 1 2
3
5
2
4
c
1
c
2
c
3
3
5
;
so c
1
D 1, c
2
D 1, c
3
D 1, and y D e
x
.1 C x C x
2
/ C .1 x/e
x
.
9.3.72. If y D ue
x
, t hen y
000
2y
00
5y
0
C 6y D e
x
Œ.u
.4/
4u
000
C 6u
00
4u
0
C u/ C 2.u
000
3u
00
C3u
0
u/ C 2.u
00
2u
0
Cu/ C2.u
0
u/ Cu D e
x
.u
.4/
2u
000
C2u
00
/. Let u
p
D x
2
.A C Bx/,
where .4A 12B/ C 12Bx D 20 12x. Then B D 1, A D 2, and y
p
D x
2
.2 x/e
x
. Since
p.r/ D .r C1/
2
.r
2
C1/, t he general solution is y D x
2
.2x/e
x
Ce
x
.c
1
Cc
2
x/Cc
3
cos x Cc
4
sin x.
Therefore,
2
6
6
4
y
y
0
y
00
y
000
3
7
7
5
D
2
6
6
4
x
2
.2 x/e
x
x.x
2
5x C 4/e
x
.x
3
8x
2
C 14x 4/e
x
.x
3
11x
2
C 30x 18/e
x
3
7
7
5
C
2
6
6
4
e
x
xe
x
cos x sin x
e
x
.1 x/e
x
sin x cos x
e
x
.x 2/e
x
cos x sin x
e
x
.3 x/e
x
sin x cos x
3
7
7
5
2
6
6
4
c
1
c
2
c
3
c
4
3
7
7
5
Setting x D 0 and imposing the initial conditions yields
2
6
6
4
3
4
7
22
3
7
7
5
D
2
6
6
4
0
0
4
18
3
7
7
5
C
2
6
6
4
1 0 1 0
1 1 0 1
1 2 1 0
1 3 0 1
3
7
7
5
2
6
6
4
c
1
c
2
c
3
c
4
3
7
7
5
;
so c
1
D 2, c
2
D 1, c
3
D 1, c
4
D 1, and y D .2 x/.x
2
C 1/e
x
C cos x si n x.
9.3.74. If y D ue
x
, then y
.4/
3y
000
C5y
00
2y
0
D e
x
Œ.u
.4/
C4u
000
C6u
00
C4u
0
Cu/ 3.u
000
C3u
00
C
3u
0
C u/ C 4.u
00
C 2u
0
C u/ 2.u
0
C u/ D e
x
.u
.4/
C u
000
C u
00
C u
0
/. Since cos x and sin x satisfy
Section 9.4
Variation of Parameters for Higher Order Equations
181
u
.4/
C u
000
C u
00
C u
0
D 0, let u
p
D x.A cos x C B sin x/ where 2A 2B D 2 and 2A 2B D 2.
Then A D 1, B D 0, and y
p
D e
x
cos x. Since p.r/ D r.r 1/Œ.r 1/
2
C 1 the general solution is
y D e
x
cos x C c
1
C e
x
.c
2
C c
3
cos x C c
4
sin x/. Therefore,
2
6
6
4
y
y
0
y
00
y
000
3
7
7
5
D
2
6
6
4
xe
x
cos x
e
x
..x C 1/ cos x x sin x/
e
x
.2 cos x 2.x C 1/ sin x/
e
x
.2x cos x C 2.x C 3/ sin x/
3
7
7
5
C
2
6
6
4
1 e
x
e
x
cos x e
x
sin x
0 e
x
e
x
.cos x sin x/ e
x
.cos x Csin x/
0 e
x
2e
x
sin x 2e
x
cos x
0 e
x
e
x
.2 cos x C 2 sin x/ e
x
.2 cos x 2 sin x/
3
7
7
5
2
6
6
4
c
1
c
2
c
3
c
4
3
7
7
5
Setting x D 0 and imposing the initial conditions yields
2
6
6
4
2
0
1
5
3
7
7
5
D
2
6
6
4
0
1
2
0
3
7
7
5
C
2
6
6
4
1 1 1 0
0 1 1 1
0 1 0 2
0 1 2 2
3
7
7
5
2
6
6
4
c
1
c
2
c
3
c
4
3
7
7
5
;
so c
1
D 2, c
2
D 1, c
3
D 1, c
4
D 1, and 2 C e
x
Œ.1 C x/ cos x sin x 1.
9.4 VARIATION OF PARAMETERS FOR HIGHER ORDER EQUATIONS
9.4.2. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
2
xe
x
2
x
2
e
x
2
2xe
x
2
e
x
2
.1 2x
2
/ 2xe
x
2
.1 x
2
/
e
x
2
.4x
2
2/ 2xe
x
2
.2x
2
3/ 2e
x
2
.2x
4
5x
2
C 1/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
3x
2
;
W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
xe
x
2
x
2
e
x
2
e
x
2
.1 2x
2
/ 2xe
x
2
.1 x
2
/
ˇ
ˇ
ˇ
ˇ
ˇ
D x
2
e
2x
2
; W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
2
x
2
e
x
2
2xe
x
2
2xe
x
2
.1 x
2
/
ˇ
ˇ
ˇ
ˇ
ˇ
D
2xe
2x
2
; W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
2
xe
x
2
2xe
x
2
e
x
2
.1 2x
2
/
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
2
; u
0
1
D
F W
1
P
0
W
D
1
2
x
5=2
; u
0
2
D
F W
2
P
0
W
D
x
3=2
; u
0
3
D
F W
2
P
0
W
D
p
x=2; u
1
D x
7=2
=7; u
2
D
2
5
x
5=2
; u
3
D x
3=2
=3; y
p
D u
1
y
1
Cu
2
y
2
Cu
3
y
3
D
8
105
e
x
2
x
7=2
.
9.4.4. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1
e
x
x
e
x
x
0
e
x
.x 1/
x
2
e
x
.x C 1/
x
2
0
e
x
.x
2
2x C 2/
x
3
e
x
.x
2
C 2x C 2/
x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2=x
2
; W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
x
e
x
x
e
x
.x 1/
x
2
e
x
.x C 1/
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
2
x
2
; W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1
e
x
x
0
e
x
.x C 1/
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
x
.x C 1/
x
2
; W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1
e
x
x
0
e
x
.x 1/
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
x
.x 1/
x
2
; u
0
1
D
F W
1
P
0
W
D 2; u
0
2
D
F W
2
P
0
W
D e
x
.x C 1/; u
0
3
D
F W
2
P
0
W
D e
x
.x 1/; u
1
D 2x; u
2
D e
x
.x C 2/;
u
3
D e
x
.x 2/; y
p
D u
1
y
1
C u
2
y
2
C u
3
y
3
D 2.x
2
C 2/=x.
9.4.6. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
1
x
e
x
e
x
1=x
2
e
x
e
x
2
x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
2.x
2
2/
x
3
; W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
1
x
e
x
1
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
x
.x 1/
x
2
; W
2
D
182 Chapter 9
Linear Higher Order Equations
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
1
x
e
x
1
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
x
.x C 1/
x
2
; W
3
D
ˇ
ˇ
ˇ
ˇ
e
x
e
x
e
x
e
x
ˇ
ˇ
ˇ
ˇ
D 2; u
0
1
D
F W
1
P
0
W
D e
x
.x 1/; u
0
2
D
F W
2
P
0
W
D e
x
.x C 1/; u
0
3
D
F W
2
P
0
W
D 2x
2
; y
p
D u
1
y
1
C u
2
y
2
C u
3
y
3
D 2
x
2
3
.
9.4.8. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
p
x
1
p
x
x
2
1
2
p
x
1
2x
3=2
2x
1
4x
3=2
3
4x
5=2
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
15
4x
; W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1
p
x
x
2
1
2x
3=2
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
5
p
x
2
; W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
p
x x
2
1
2
p
x
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
3x
3=2
2
; W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
p
x
1
p
x
1
2
p
x
1
2x
3=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
1
x
; u
0
1
D
F W
1
P
0
W
D 5
p
x; u
0
2
D
F W
2
P
0
W
D 3x
3=2
; u
0
3
D
F W
2
P
0
W
D
2
x
; u
1
D
10
3
x
3=2
; u
2
D
6
5
x
5=2
; u
3
D 2 ln jxj; y
p
D u
1
y
1
C u
2
y
2
C u
3
y
3
D 2x
2
ln jxj
32
15
x
2
. Since
32
15
x
2
satisfies the complementary equation we take y
p
D ln jxj.
9.4.10. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x 1=x
e
x
x
1
1
x
2
e
x
.x 1/
x
2
0
2
x
3
e
x
.x
2
2x C 2/
x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
2e
x
.1 x/
x
3
; W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1
x
e
x
x
1
x
2
e
x
.x 1/
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
x
x
2
;
W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
e
x
x
1
e
x
.x 1/
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
x
.x 2/
x
; W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
1
x
1
1
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
2
x
; u
0
1
D
F W
1
P
0
W
D 1; u
0
2
D
F W
2
P
0
W
D
x.2 x/; u
0
3
D
F W
2
P
0
W
D 2xe
x
; u
1
D x; u
2
D
x
2
.3 x/
3
; u
3
D 2e
x
.x C 1/; y
p
D u
1
y
1
C
u
2
y
2
C u
3
y
3
D
2x
3
C3x
2
C 6x C 6
3x
. Since x C
2
x
satisfies the complementary equation we take
y
p
D
2x
2
C 6
3
.
9.4.12. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x e
x
e
x
1 e
x
e
x
0 e
x
e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2x; W
1
D
ˇ
ˇ
ˇ
ˇ
e
x
e
x
e
x
e
x
ˇ
ˇ
ˇ
ˇ
D 2; W
2
D
ˇ
ˇ
ˇ
ˇ
x e
x
1 e
x
ˇ
ˇ
ˇ
ˇ
D e
x
.x C
1/; W
3
D
ˇ
ˇ
ˇ
ˇ
x e
x
1 e
x
ˇ
ˇ
ˇ
ˇ
D e
x
.x 1/; u
0
1
D
F W
1
P
0
W
D 1; u
0
2
D
F W
2
P
0
W
D e
x
.x C 1/=2; u
0
3
D
F W
2
P
0
W
D
e
x
.x1/=2; u
1
D x; u
2
D e
x
.xC2/=2; u
3
D e
x
.x2/=2; y
p
D u
1
y
1
Cu
2
y
2
Cu
3
y
3
D x
2
2.
Section 9.4
Variation of Parameters for Higher Order Equations
183
9.4.14. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
p
x 1=
p
x x
3=2
1
x
3=2
1
2
p
x
1
2x
3=2
3
p
x
2
3
2x
5=2
1
4x
3=2
3
4x
5=2
3
4
p
x
15
4x
7=2
3
8x
5=2
15
8x
7=2
3
8x
3=2
105
8x
9=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
12
x
6
; W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1
p
x
x
3=2
1
x
3=2
1
2x
3=2
3
p
x
2
3
2x
5=2
3
4x
5=2
3
4
p
x
15
4x
7=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6
x
7=2
; W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
p
x x
3=2
1
x
3=2
1
2
p
x
3
p
x
2
3
2x
5=2
1
4x
3=2
3
4
p
x
15
4x
7=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6
x
5=2
; W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
p
x
1
p
x
1
x
3=2
1
2
p
x
1
2x
3=2
3
2x
5=2
1
4x
3=2
3
4x
5=2
15
4x
7=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
2
x
9=2
; W
4
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
p
x
1
p
x
x
3=2
1
2
p
x
1
2x
3=2
3
p
x
2
1
4x
3=2
3
4x
5=2
3
4
p
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
2
x
3=2
; u
0
1
D
F W
1
P
0
W
D 3x; u
0
2
D
F W
2
P
0
W
D
3x
2
; u
0
3
D
F W
2
P
0
W
D 1; u
0
4
D
F W
4
P
0
W
D x
3
; u
1
D
3x
2
2
; u
2
D x
3
; u
3
D x; u
4
D
x
4
4
;
y
p
D u
1
y
1
C u
2
y
2
C u
3
y
3
D
x
5=2
4
.
9.4.16. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
x
3
x
4
1 2x 3x
2
4x
3
0 2 6x 12x
2
0 0 6 24x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 12x
4
; W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
2
x
3
x
4
2x 3x
2
4x
3
2 6x 12x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2x
6
; W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
3
x
4
1 3x
2
4x
3
0 6x 12x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6x
5
; W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
x
4
1 2x 4x
3
0 2 12x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 6x
4
; W
4
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
x
3
1 2x 3x
2
0 2 6x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2x
3
; u
0
1
D
F W
1
P
0
W
D
x
2
6
;
u
0
2
D
F W
2
P
0
W
D
x
2
; u
0
3
D
F W
2
P
0
W
D
1
2
; u
0
4
D
F W
4
P
0
W
D
1
6x
; u
1
D
x
3
18
; u
2
D
x
2
4
; u
3
D
x
2
;
u
4
D
ln jxj
6
; y
p
D u
1
y
1
Cu
2
y
2
Cu
3
y
3
D
x
4
ln jxj
6
11x
4
36
. Since
11x
4
36
satisfies the complementary
equation we take y
p
D
x
4
ln jxj
6
.
9.4.18. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1=x 1=x
2
1 2x 1=x
2
2=x
3
0 2 2=x
3
6=x
4
0 0 6=x
4
24=x
5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 72=x
6
; W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
2
1=x 1=x
2
2x 1=x
2
2=x
3
2 2=x
3
6=x
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 12=x
4
;
W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x 1=x 1=x
2
1 1=x
2
2=x
3
0 2=x
3
6=x
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 6=x
5
; W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1=x
2
1 2x 2=x
3
0 2 6=x
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 12=x
2
; W
4
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1=x
1 2x 1=x
2
0 2 2=x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6=x; u
0
1
D
F W
1
P
0
W
D 2; u
0
2
D
F W
2
P
0
W
D 1=x; u
0
3
D
F W
2
P
0
W
D 2x
2
; u
0
4
D
F W
4
P
0
W
D x
3
; u
1
D 2x;
u
2
D ln jxj; u
3
D 2x
3
=3; u
4
D x
4
=4; y
p
D u
1
y
1
C u
2
y
2
C u
3
y
3
D x
2
ln jxj 19x
2
=12. Since
19x
2
=12 satisfies the complementary equation we take y
p
D x
2
ln jxj.
184 Chapter 9
Linear Higher Order Equations
9.4.20. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
2x
e
x
=x
e
2x
x
e
x
2e
2x
e
x
.x 1/
x
2
e
2x
.2x 1/
x
2
e
x
4e
2x
e
x
.x
2
2x C 2/
x
3
2e
2x
.2x
2
2x C 1/
x
3
e
x
8e
2x
e
x
.x
3
3x
2
C 6x 6/
x
4
2e
2x
.4x
3
6x
2
C 6x 3/
x
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
6x
x
4
;
W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
2x
e
x
x
e
2x
x
2e
2x
e
x
.x 1/
x
2
e
2x
.2x 1/
x
2
4e
2x
e
x
.x
2
2x C 2/
x
3
2e
2x
.2x
2
2x C 1/
x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
5x
x
3
;
W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
x
x
e
2x
x
e
x
e
x
.x 1/
x
2
e
2x
.2x 1/
x
2
e
x
e
x
.x
2
2x C2/
x
3
2e
2x
.2x
2
2x C 1/
x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
4x
x
3
;
W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
2x
e
2x
x
e
x
2e
2x
e
2x
.2x 1/
x
2
e
x
4e
2x
2e
2x
.2x
2
2x C 1/
x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
5x
.2 x/
x
3
;
W
4
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
2x
e
x
x
e
x
2e
2x
e
x
.x 1/
x
2
e
x
4e
2x
e
x
.x
2
2x C 2/
x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
e
4x
.x C 2/
x
3
;
u
0
1
D
F W
1
P
0
W
D 3; u
0
2
D
F W
2
P
0
W
D 3e
x
; u
0
3
D
F W
2
P
0
W
D 3.2 x/; u
0
4
D
F W
4
P
0
W
D 3e
x
.x C 2/;
u
1
D 3x; u
2
D 3e
x
; u
3
D 3x.4 x/=2; u
4
D 3e
x
.x C 3/; y
p
D u
1
y
1
C u
2
y
2
C u
3
y
3
D
3e
x
.x
2
C 4x C 6/
2x
. Since
3e
x
.2x C 3/
x
is a solution of the complementary equation we t ake y
p
D
3xe
x
2
.
9.4.22. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
3
x ln x
1 3x
2
1 C ln x
0 6x 1=x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 4x
2
; W
1
D
ˇ
ˇ
ˇ
ˇ
x
3
x ln x
3x
2
1 C ln x
ˇ
ˇ
ˇ
ˇ
D x
3
2x
3
ln x; W
2
D
ˇ
ˇ
ˇ
ˇ
x x ln x
1 1 C ln x
ˇ
ˇ
ˇ
ˇ
D x; W
3
D
ˇ
ˇ
ˇ
ˇ
x x
3
1 3x
2
ˇ
ˇ
ˇ
ˇ
D 2x
3
; u
0
1
D
F W
1
P
0
W
D 2 ln x=x
1
x
; u
0
2
D
F W
2
P
0
W
D
1
x
3
;
u
0
3
D
F W
2
P
0
W
D
2
x
; u
1
D .ln x/
2
ln x; u
2
D
1
2x
2
; u
3
D 2 ln x; y
p
D u
1
y
1
C u
2
y
2
C u
3
y
3
D
x.ln x/
2
x ln x
x
2
. Since x ln x
x
2
satisfies the complementary equation we take y
p
D x.ln x/
2
Section 9.4
Variation of Parameters for Higher Order Equations
185
The general solution is y D x.ln x/
2
C c
1
x Cc
2
x
3
C c
3
x ln x, so
2
4
y
y
0
y
00
3
5
D
2
6
4
x.ln x/
2
.ln x/
2
2 ln x
2 ln x
x
2
x
3
7
5
C
2
6
4
x x
3
x ln x
1 3x
2
1 Cln x
0 6x
1
x
3
7
5
2
4
c
1
c
2
c
3
3
5
Setting x D 1 and imposing the initial conditions yields
2
4
4
4
2
3
5
D
2
4
0
0
2
3
5
C
2
4
1 1 0
1 3 1
0 6 1
3
5
2
4
c
1
c
2
c
3
3
5
:
Solving this system yields c
1
D 3, c
2
D 1, c
3
D 2. Therefore,y D x.ln x/
2
C 3x C x
3
2x ln x.
9.4.24. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
2x
xe
x
e
x
2e
2x
e
x
.1 x/
e
x
4e
2x
e
x
.x 2/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
2x
.6x 5/; W
1
D
ˇ
ˇ
ˇ
ˇ
e
2x
xe
x
2e
2x
e
x
.1 x/
ˇ
ˇ
ˇ
ˇ
D e
x
.1 3x/;
W
2
D
ˇ
ˇ
ˇ
ˇ
e
x
xe
x
e
x
e
x
.1 x/
ˇ
ˇ
ˇ
ˇ
D 1 2x; W
3
D
ˇ
ˇ
ˇ
ˇ
e
x
e
2x
e
x
2e
2x
ˇ
ˇ
ˇ
ˇ
D e
3x
; u
0
1
D
F W
1
P
0
W
D 1 3x; u
0
2
D
F W
2
P
0
W
D e
x
.2x 1/; u
0
3
D
F W
2
P
0
W
D e
2x
; u
1
D
x.2 3x/
2
; u
2
D e
x
.2x C 1/; u
3
D
e
2x
2
;
y
p
D u
1
y
1
C u
2
y
2
C u
3
y
3
D e
x
.3x
2
C x C 2/=2. Since
e
x
2
is a solution of the complementary
equation we take y
p
D
e
x
.3x C 1/x
2
.
The general solution is y D
e
x
.3x C 1/x
2
C c
1
e
x
C c
2
e
2x
C c
3
xe
x
, so
2
4
y
y
0
y
00
3
5
D
2
6
6
6
6
6
4
e
x
.3x C 1/x
2
e
x
.3x
2
C7x C 1/
2
e
x
.3x
2
C 13x C 8/
2
3
7
7
7
7
7
5
C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
x
e
2x
xe
x
e
x
2e
2x
e
x
.1 x/
e
x
4e
2x
e
x
.x 2/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2
4
c
1
c
2
c
3
3
5
:
Setting x D 0 and imposing the initial conditions yields
2
4
4
3
2
19
3
5
D
2
4
0
1
2
4
3
5
C
2
4
1 1 0
1 2 1
1 4 2
3
5
2
4
c
1
c
2
c
3
3
5
:
Solving this system yields c
1
D 3, c
2
D 1, c
3
D 4. Therefore, y D
e
x
.3x C 1/x
2
3e
x
e
2x
C
4xe
x
.
9.4.26. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
e
x
1 2x e
x
0 2 e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D e
x
.x
2
2xC2/; W
1
D
ˇ
ˇ
ˇ
ˇ
x
2
e
x
2x e
x
ˇ
ˇ
ˇ
ˇ
D e
x
.x
2
2x/; W
2
D
ˇ
ˇ
ˇ
ˇ
x e
x
1 e
x
ˇ
ˇ
ˇ
ˇ
D
e
x
.x 1/; W
3
D
ˇ
ˇ
ˇ
ˇ
x x
2
1 2x
ˇ
ˇ
ˇ
ˇ
D x
2
; u
0
1
D
F W
1
P
0
W
D x.x 2/; u
0
2
D
F W
2
P
0
W
D 1 x; u
0
3
D
F W
2
P
0
W
D
x
2
e
x
; y
p
D u
1
y
1
Cu
2
y
2
Cu
3
y
3
D
x
4
C 6x
2
C 12x C 12
6
. Since
6x
2
C 12x
6
is a solution of the
complementary equations we take y
p
D
x
4
C 12
6
.
186 Chapter 9
Linear Higher Order Equations
The general solution is y D
x
4
C 12
6
C c
1
x C c
2
x
2
C c
3
e
x
, so
2
4
y
y
0
y
00
3
5
D
2
4
.x
4
C 12/=6
2x
3
=3
2x
2
3
5
C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
e
x
1 2x e
x
0 2 e
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2
4
c
1
c
2
c
3
3
5
:
Setting x D 0 and imposing the initial conditions yields
2
4
0
5
0
3
5
D
2
4
2
0
0
3
5
C
2
4
0 0 1
1 0 1
0 2 1
3
5
2
4
c
1
c
2
c
3
3
5
:
Solving this system yields c
1
D 3, c
2
D 1, c
3
D 2. Therefore, y D
x
4
C 12
6
C3x x
2
C 2e
x
.
9.4.28. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 e
x
e
3x
1 e
x
3e
3x
0 e
x
9e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 2e
4x
.3x1/; W
1
D
ˇ
ˇ
ˇ
ˇ
e
x
e
3x
e
x
3e
3x
ˇ
ˇ
ˇ
ˇ
D 2e
4x
; W
2
D
ˇ
ˇ
ˇ
ˇ
x C 1 e
3x
1 3e
3x
ˇ
ˇ
ˇ
ˇ
D
e
3x
.3x C 2/; W
3
D
ˇ
ˇ
ˇ
ˇ
x C 1 e
x
1 e
x
ˇ
ˇ
ˇ
ˇ
D xe
x
; u
0
1
D
F W
1
P
0
W
D 2e
x
; u
0
2
D
F W
2
P
0
W
D 3x 2;
u
0
3
D
F W
2
P
0
W
D xe
2x
; u
1
D 2e
x
; u
2
D
x.3x C 4/
2
; u
3
D
e
2x
.2x C 1/
4
; y
p
D u
1
y
1
C
u
2
y
2
C u
3
y
3
D
e
x
.6x
2
C 2x 7/
4
. Since
7e
x
4
is a solution of the complementary equation we take
y
p
D
xe
x
.3x C 1/
2
The general solution is y D
xe
x
.3x C 1/
2
C c
1
.x C 1/ C c
2
e
x
C c
3
e
2x
, so
2
4
y
y
0
y
00
3
5
D
2
4
xe
x
.3x C 1/=2
e
x
.3x
2
C 7x C 1/=2
e
x
.3x
2
C 13x C 8/=2
3
5
C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x C 1 e
x
e
3x
1 e
x
3e
3x
0 e
x
9e
3x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:
Setting x D 0 and imposing the initial conditions yields
2
4
3
4
5
4
1
4
3
5
D
2
4
0
1
2
4
3
5
C
2
4
1 1 1
1 1 3
0 1 9
3
5
2
4
c
1
c
2
c
3
3
5
:
Solving this system yields c
1
D
1
2
, c
2
D
1
4
, c
3
D
1
2
. Therefore, y D
xe
x
.3x C 1/
2
C
x C 1
2
e
x
4
C
e
2x
2
.
9.4.30. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1
x
x ln x
1 2x
1
x
2
ln x C 1
0 2
2
x
3
1
x
0 0
6
x
2
1
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
12
x
3
; W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
2
1
x
x ln x
2x
1
x
2
ln x C 1
2
2
x
3
1
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 6
ln x
x
3
x
;
Section 9.4
Variation of Parameters for Higher Order Equations
187
W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
1
x
x ln x
1
1
x
2
ln x C 1
0
2
x
3
1
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
4
x
2
; W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
x ln x
1 2x ln x C 1
0 2
1
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x; W
4
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1
x
1 2x
1
x
2
0 2
2
x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6
x
; u
0
1
D
F W
1
P
0
W
D 9 ln x=2
9
4
; u
0
2
D
F W
2
P
0
W
D
3
x
; u
0
3
D
F W
2
P
0
W
D
3x
2
4
; u
0
4
D
F W
4
P
0
W
D
9
2
;
u
1
D
9x ln x
2
27x
4
; u
2
D 3 ln x; u
3
D
x
3
4
; u
4
D
9x
2
; y
p
D u
1
y
1
Cu
2
y
2
Cu
3
y
3
D 3x
2
ln x 7x
2
.
Since 7x
2
satisfies the complementary equation we take y
p
D 3x
2
ln x.
The general solution is y D 3x
2
ln x C c
1
x C c
2
x
2
C
c
3
x
C c
4
x ln x, so
2
6
6
4
y
y
0
y
00
y
000
3
7
7
5
D
2
6
6
6
4
3x
2
ln x
6x ln x C 3x
6 ln x C 9
6
x
3
7
7
7
5
C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x x
2
1
x
x ln x
1 2x
1
x
2
ln x C 1
0 2
2
x
3
1
x
0 0
6
x
2
1
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2
6
6
4
c
1
c
2
c
3
c
4
3
7
7
5
:
Setting x D 1 and imposing the initial conditions yields
2
6
6
4
7
11
5
6
3
7
7
5
D
2
6
6
4
0
3
9
6
3
7
7
5
C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 0
1 2 1 1
0 2 2 1
0 0 6 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2
6
6
4
c
1
c
2
c
3
c
4
3
7
7
5
:
Solving this system yields c
1
D 0, c
2
D 7, c
3
D 0, c
4
D 0. Therefore, y D 3x
2
ln x 7x
2
.
9.4.32. W D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
p
x 1=x 1=
p
x
1 1=2
p
x 1=x
2
1=2x
3=2
0 1=4x
3=2
2=x
3
3=4x
5=2
0 3=8x
5=2
6=x
4
15=8x
7=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 9=8x
6
; W
1
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
p
x 1=x 1=
p
x
1=2
p
x 1=x
2
1=2x
3=2
1=4x
3=2
2=x
3
3=4x
5=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
3=4x
4
; W
2
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x 1=x 1=
p
x
1 1=x
2
1=2x
3=2
0 2=x
3
3=4x
5=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 3=2x
7=2
; W
3
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
p
x 1=
p
x
1 1=2
p
x 1=2x
3=2
0 1=4x
3=2
3=4x
5=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 3=4x
2
;
W
4
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
p
x 1=x
1 1=2
p
x 1=x
2
0 1=4x
3=2
2=x
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 3=2x
5=2
; u
0
1
D
F W
1
P
0
W
D 1=x; u
0
2
D
F W
2
P
0
W
D 2=
p
x;
u
0
3
D
F W
2
P
0
W
D x; u
0
4
D
F W
4
P
0
W
D 2
p
x; u
1
D ln x; u
2
D 4
p
x; u
3
D x
2
=2; u
4
D 4x
3=2
=3;
y
p
D u
1
y
1
C u
2
y
2
C u
3
y
3
D x ln x 19x=6. since 19x=6 satisfies t he complementary equation we
take y
p
D x ln x.
The general solution is y D x ln x C c
1
x C c
2
p
x C c
3
=x C c
4
=
p
x, so
2
6
6
4
y
y
0
y
00
y
000
3
7
7
5
D
2
6
6
4
x ln x
ln x C 1
1=x
1=x
2
3
7
7
5
C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
p
x 1=x 1=
p
x
1 1=2
p
x 1=x
2
1=2x
3=2
0 1=4x
3=2
2=x
3
3=4x
5=2
0 3=8x
5=2
6=x
4
15=8x
7=2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2
6
6
4
c
1
c
2
c
3
c
4
3
7
7
5
:
188 Chapter 9
Linear Higher Order Equations
Setting x D 1 and imposing the initial conditions yields
2
6
6
4
2
0
4
37
4
3
7
7
5
D
2
6
6
4
0
1
1
1
3
7
7
5
C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 1 1
1 1=2 1 1=2
0 1=4 2 3=4
0 3=8 6 15=8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2
6
6
4
c
1
c
2
c
3
c
4
3
7
7
5
:
Solving this system yields c
1
D 1, c
2
D 1, c
3
D 1, c
4
D 1. Therefore, y D x ln xCx
p
x C
1
x
C
1
p
x
.
9.4.34. (a) Since u
0
j
D .1/
nj
F W
j
P
0
W
(1 j n), the argument used in the derivation of the method of
variation o f parameters impl ies that y
p
is a solution of (A).
(b) Follows immediately from (a), since u
j
.x
0
/ D 0, j D 1; 2; : : : ; n.
(c) Expand the determinant in cofactors of its nth row.
(d) Just differentiate the determinan t n 1 times.
(e) If 0 j n 2, then
@
j
G.x; t /
@x
j
ˇ
ˇ
ˇ
ˇ
xDt
has tw o identical rows, and is therefore zero, while
@
n1
G.x; t /
@x
j
ˇ
ˇ
ˇ
ˇ
xDt
D W.t/
(f) Since y
p
.x/ D
Z
x
x
0
G.x; t /F.t/ dt, y
0
p
.x/ D G.x; x/F .x/C
Z
x
x
0
@G.x; t/
@x
F .t/ dt. But G.x; x/ D
0 from (e), so y
0
p
.x/ D
Z
x
x
0
@G.x; t/
@x
F .t/ dt. Repeating this argument for j D 1; : : : ; n and invoking
(e) each time yield s the conclusion.
9.4.36.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
.t/ y
1
.t/ y
2
.t/
y
0
1
.t/ y
0
1
.t/ y
0
2
.t/
y
1
.x/ y
1
.x/ y
2
.x/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
t t
2
1=t
1 2t 1=t
2
x x
2
1=x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
t
2
1=t
2t 1=t
2
ˇ
ˇ
ˇ
ˇ
x
2
ˇ
ˇ
ˇ
ˇ
t 1=t
1 1=t
2
ˇ
ˇ
ˇ
ˇ
C
1
x
ˇ
ˇ
ˇ
ˇ
t t
2
1 2t
ˇ
ˇ
ˇ
ˇ
D 3x C 2
x
2
t
C
t
2
x
D
.x t/
2
.2x C t/
xt
:
Since P
0
.t/ D t
3
and W .t/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
t t
2
1=t
1 2t 1=t
2
x x
2
1=x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6
t
, G.x; t/ D
.x t/
2
.2x C t/
6xt
3
, so y
p
D
Z
x
x
0
.x t/
2
.2x C t/
6xt
3
F .t/ dt .
9.4.38.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
.t/ y
1
.t/ y
2
.t/
y
0
1
.t/ y
0
1
.t/ y
0
2
.t/
y
1
.x/ y
1
.x/ y
2
.x/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
t 1=t e
t
=t
1 1=t
2
e
t
.1=t 1=t
2
/
x 1=x e
x
=x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D x
ˇ
ˇ
ˇ
ˇ
1=t e
t
=t
1=t
2
e
t
.1=t 1=t
2
/
ˇ
ˇ
ˇ
ˇ
1
x
ˇ
ˇ
ˇ
ˇ
t e
t
=t
1 e
t
.1=t 1=t
2
/
ˇ
ˇ
ˇ
ˇ
C
e
x
x
ˇ
ˇ
ˇ
ˇ
t 1=t
1 1=t
2
ˇ
ˇ
ˇ
ˇ
D
xe
t
t
2
e
t
.t 2/
xt
2e
x
xt
D
x
2
e
t
e
t
t.t 2/ 2te
x
xt
2
Section 9.4
Variation of Parameters for Higher Order Equations
189
Since P
0
.t/ D t.1 t/ and W.t/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
t 1=t e
t
=t
1 1=t
2
e
t
.1=t 1=t
2
/
0 2=t
3
e
t
.1=t 2=t
2
C 2=t
3
/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
2e
t
.1 t/
t
3
, G.x; t/ D
x
2
t.t 2/ 2te
.xt /
2x.t 1/
2
, so y
p
D
Z
x
x
0
x
2
t.t 2/ 2te
.xt /
2x.t 1/
2
F .t/ dt .
9.4.40.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
.t/ y
1
.t/ y
2
.t/ y
3
.t/
y
0
1
.t/ y
0
1
.t/ y
0
2
.t/ y
0
3
.t/
y
00
1
.t/ y
00
1
.t/ y
00
2
.t/ y
00
3
.t/
y
1
.x/ y
1
.x/ y
2
.x/ y
3
.x/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 t t
2
1=t
0 1 2t 1=t
2
0 0 2 2=t
3
1 x x
2
1=x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
t t
2
1=t
1 2t 1=t
2
0 2 2=t
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
C x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 t
2
1=t
0 2t 1=t
2
0 2 2=t
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 t 1=t
0 1 1=t
2
0 0 2=t
3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
C
1
x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 t t
2
0 1 2t
0 0 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
6
t
C
6x
t
2
2x
2
t
3
C
2
x
D
2.t x/
3
xt
3
:
Since P
0
.t/ D t and W.t/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 t t
2
1=t
0 1 2t 1=t
2
0 0 2 2=t
3
0 0 0 6=t
4
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
12
t
4
, G.x; t/ D
.x t/
3
6x
, so y
p
D
Z
x
x
0
.x t/
3
6x
F .t/ dt.
9.4.42.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
y
1
.t/ y
1
.t/ y
2
.t/ y
3
.t/
y
0
1
.t/ y
0
1
.t/ y
0
2
.t/ y
0
3
.t/
y
00
1
.t/ y
00
1
.t/ y
00
2
.t/ y
00
3
.t/
y
1
.x/ y
1
.x/ y
2
.x/ y
3
.x/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 t
2
e
2t
e
2t
0 2t 2e
2t
2e
2t
0 2 4e
2t
4e
2t
1 x
2
e
2x
e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
t
2
e
2t
e
2t
2t 2e
2t
2e
2t
2 4e
2t
4e
2t
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
C x
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 e
2t
e
2t
0 2e
2t
2e
2t
0 4e
2t
4e
2t
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 t
2
e
2t
0 2t 2e
2t
0 2 4e
2t
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
C e
2x
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 t
2
e
2t
0 2t 2e
2t
0 2 4e
2t
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D .16t
2
8/ C 16x
2
e
2.xt/ t
.8t C 4/ C e
2.xt/
.8t 4/:
Since P
0
.t/ D t and W .t/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 t
2
e
2t
e
2t
0 2t 2e
2t
2e
2t
0 2 4e
2t
4e
2t
0 0 8e
2t
8e
2t
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 128t,
G.x; t / D
e
2.xt/
.1 C 2t/ C e
2.xt/
.1 2t/ 4x
2
C 4t
2
2
32t
2
, so
y
p
D
Z
x
x
0
e
2.xt/
.1 C 2t/ C e
2.xt/
.1 2t/ 4x
2
C 4t
2
2
32t
2
F .t/ dt.
CHAPTER 1 0
Linear Systems of D ifferential
Equations
10.1 INTRODUCTION TO SYST EMS OF DIFFERENTIAL EQUATIONS
10.1.2. Q
0
1
D .rate in/
1
.rate out/
1
and Q
0
2
D .rate in/
2
.rate out/
2
.
The volumes of the solutions in T
1
and T
2
are V
1
.t/ D 100 C 2t and V
2
.t/ D 100 C 3t, respectively.
T
1
receives salt from the external source at the rate of (2 lb/gal) (6 gal/min) D 12 lb/min, and fr om
T
2
at the rate of (lb /gal in T
2
/ (1 gal/min) D
1
100 C 3t
Q
2
lb/min. Therefore, (A) (r ate in)
1
D 12 C
1
100 C 3t
Q
2
. Solution leaves T
1
at 5 gal/min, since 3 gal/min are dr ained and 2 gal/min are pumped to
T
2
; hence (B) .rate out/
1
D . lb/gal in T
1
/ (5 gal/min) D
1
100 C 2t
Q
1
5 D
5
100 C 2t
Q
1
. Now (A)
and (B) imply that (C) Q
0
1
D 12
5
100 C 2t
Q
1
C
1
100 C 3t
Q
2
.
T
2
receives salt from the ex ternal source at the rate of (1 lb/gal) (5 gal/min) D 5 lb/min, and from
T
1
at the rate of (lb/ gal in T
1
/ (2 gal/min) D
1
100 C 2t
Q
1
2 D
1
50 C t
Q
1
lb/min. Therefore, (D)
(rate in)
2
D 5 C
1
50 C t
Q
1
. Solution leaves T
2
at 4 gal/min, since 3 gal/min are drained and 1 gal/mi n is
pumped to T
1
; hence (E) .rate out/
2
D . lb/gal in T
2
/(4 gal/ min) D
1
100 C 3t
Q
2
4 D
4
100 C 3t
Q
2
.
Now (D) and (E) imply that (F) Q
0
2
D 5 C
1
50 C t
Q
1
4
100 C 3t
Q
2
. Now (C) and (F) for m the desired
system.
10.1.4. mX
00
D ˛X
0
mgR
2
X
kXk
3
; see Example 10.1.3.
10.1.8.
I
1i
D g
1
.t
i
; y
1i
; y
2i
/;
J
1i
D g
2
.t
i
; y
1i
; y
2i
/;
I
2i
D g
1
.t
i
C h; y
1i
C hI
1i
; y
2i
C hJ
1i
/ ;
J
2i
D g
2
.t
i
C h; y
1i
C hI
1i
; y
2i
C hJ
1i
/ ;
y
1;iC1
D y
1i
C
h
2
.I
1i
C I
2i
/;
y
2;i C1
D y
2i
C
h
2
.J
1i
C J
2i
/:
191
192 Chapter 10
Linear Systems of D ifferential Equations
10.2 LINEAR SYSTEMS OF DIFFEREN TIAL EQUATIONS
10.2.6. Let y
i
D y
.i1/
, i D 1; 2; : : : ; n; then y
0
i
D y
iC1
, i D 1; 2; : : :; n 1 and P
0
.t/y
0
n
CP
1
.t/y
n
C
C P
n
.t/y
1
D F.t/, so
A D
1
P
0
2
6
6
6
6
6
4
0 1 0 0
0 0 1 0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
0 0 0 1
P
n
P
n1
P
n2
P
1
3
7
7
7
7
7
5
and f D
1
P
0
2
6
6
6
6
6
4
0
0
:
:
:
0
F
3
7
7
7
7
7
5
:
If P
0
; P
1
; : : : ; P
n
and F are continuous and P
0
has no zer os on .a; b/, then P
1
=P
0
; : : : ; P
n
=P
0
and F=P
0
are contnuous on .a; b/.
10.2.7. (a) .c
1
P Cc
2
Q/
0
ij
D .c
1
p
ij
Cc
2
q
ij
/
0
D c
1
p
0
ij
Cc
2
q
0
ij
D .c
1
P
0
Cc
2
Q
0
/
ij
; hence .c
1
P Cc
2
Q/
0
D
c
1
P
0
C c
2
Q
0
.
(b) Let P be k r and Q b e r s; then PQ is k s and .PQ/
ij
D
r
X
łD1
p
ił
q
łj
. Therefore, .PQ/
0
ij
D
r
X
łD1
p
0
ił
q
łj
C
r
X
łD1
p
ił
q
0
łj
D .P
0
Q/
ij
C .PQ
0
/
ij
. Therefore, .PQ/
0
D P
0
Q C PQ
0
.
10.2.10. (a) From Exercise 10.2.7(b) with P D Q D X, .X
2
/
0
D .XX/
0
D X
0
X C XX
0
.
(b) By starting from Exercise 10.2.7(b) and using in duction it can be shown if P
1
; P
2
; : : : ; P
n
are
square matrices of the same order, then .P
1
P
2
P
n
/
0
D P
0
1
P
2
P
n
CP
1
P
0
2
P
n
CCP
1
P
2
P
0
n
.
Taking P
1
D P
2
D D P
n
D X yields ( A ) .Y
n
/
0
D Y
0
Y
n1
C Y Y
0
Y
n2
C Y
2
Y
0
Y
n3
C C
Y
n1
Y
0
D
n1
X
rD0
Y
r
Y
0
Y
nr1
.
(c) If Y is a scalar function, then (A) reduces to the familiar result .Y
n
/
0
D nY
n1
Y
0
.
10.2.12. From Exercise 10.2.6, the initial value problem (A) P
0
.x/y
.n/
CP
1
.x/y
.n1/
CCP
n
.x/y D
F .x/, y.x
0
/ D k
0
; y
0
.x
0
/ D k
1
; : : : ; y
.n1/
.x
0
/ D k
n1
is equivalent to the initial value problem (B)
y
0
D A.t/y C f.t/, with
A D
1
P
0
2
6
6
6
6
6
4
0 1 0 0
0 0 1 0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
0 0 0 1
P
n
P
n1
P
n2
P
1
3
7
7
7
7
7
5
; f D
1
P
0
2
6
6
6
6
6
4
0
0
:
:
:
0
F
3
7
7
7
7
7
5
; and k D
2
6
6
6
4
k
0
k
1
:
:
:
k
n1
3
7
7
7
5
:
Since Theorem 10.2.1 implies that (B) has a unique solution on .a; b/, it f ollows that (A) does also.
10.3 BASIC THEORY OF HOMOGENEOUS LINEAR SYSTEM
10.3.2. (a) The system equivalent of (A) is (B) y
0
D
1
P
0
.x/
0 1
P
2
.x/ P
1
.x/
y, where y D
y
y
0
.
Let y
1
D
y
1
y
0
1
and y
1
D
y
2
y
0
2
. Then t he Wronskian of fy
1
; y
2
g as defined in this section is
y
1
y
2
y
0
1
y
0
2
D W .
Section 10.3
Basic Theory of Homogeneous Linear System
193
(b) The trace o f the matrix in (B) is P
1
.x/=P
0
.x/, so Eqn. 10.3.6 implies that W .x/ D W.x
0
/ exp
Z
x
x
0
P
1
.s/
P
0
.s/
ds
.
10.3.4. (a) See t he solution of Exercise 9.1.18.
(c)
ˇ
ˇ
ˇ
ˇ
y
0
11
y
0
12
y
21
y
22
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
a
11
y
11
C a
12
y
21
a
11
y
12
C a
12
y
22
y
21
y
22
ˇ
ˇ
ˇ
ˇ
D a
11
ˇ
ˇ
ˇ
ˇ
y
11
y
12
y
21
y
22
ˇ
ˇ
ˇ
ˇ
Ca
12
ˇ
ˇ
ˇ
ˇ
y
21
y
22
y
21
y
22
ˇ
ˇ
ˇ
ˇ
D
a
11
W C a
12
0 D a
11
W . Similarly,
y
11
y
12
y
0
21
y
0
22
D a
22
W .
10.3.6. (a) From t he equ ivalence of Theorem 10.3.3(b)and (e), Y.t
0
/ is invertible.
(b) From the equivalence of Theorem 10.3.3(a)and (b), the solution of the initial value problem is
y D Y.t/c, where c is a constant vector. To satisfy y.t
0
/ D k, we must have Y.t
0
/c D k, so c D Y
1
.t
0
/k
and y D Y
1
.t
0
/Y.t/k.
10.3.8. (b) y D
e
4t
e
4t
C c
2
2e
3t
5e
3t
where
c
1
2c
2
D 10
c
1
C 5c
2
D 4
; so c
1
D 6, c
2
D 2, and
y D
6e
4t
C 4e
3t
6e
4t
10e
3t
.
(c) Y .t/ D
e
4t
2e
3t
e
4t
5e
3t
; Y.0/ D
1 2
1 5
; Y
1
.0/ D
1
7
5 2
1 1
; y D Y .t/Y
1
.0/k D
1
7
5e
4t
C2e
3t
2e
4t
2e
3t
5e
4t
5e
3t
2e
4t
C5e
3t
k.
10.3.10. (b) y
1
D c
1
e
3t
e
3t
C c
2
e
t
e
t
, where
c
1
C c
2
D 2
c
1
c
2
D 8
; so c
1
D 5, c
2
D 3, and
y D
5e
3t
3e
t
5e
3t
C3e
t
.
(c) Y.t/ D
e
3t
e
t
3e
3t
e
t
; Y.0/ D
1 1
1 1
;
Y
1
.0/ D
1
2
1 1
1 1
; y D Y .t/Y
1
.0/k D
1
2
e
3t
C e
t
e
3t
e
t
e
3t
e
t
e
3t
Ce
t
k.
10.3.12. (b) y D c
1
2
4
e
2t
0
e
2t
3
5
Cc
2
2
4
e
2t
e
2t
0
3
5
Cc
3
2
4
e
4t
e
4t
e
4t
3
5
, where
c
1
c
2
C c
3
D 0
c
2
C c
3
D 9
c
1
C c
3
D 12
; so
c
1
D 11, c
2
D 10, c
3
D 1, and y D
1
3
2
4
e
2t
C e
4t
10e
2t
C e
4t
11e
2t
C e
4t
3
5
.
(c) Y.t/ D
2
4
e
2t
e
2t
e
4t
0 e
2t
e
4t
e
2t
0 e
4t
3
5
; Y.0/ D
2
4
1 1 1
0 1 1
1 0 1
3
5
; Y
1
.0/ D
1
3
2
4
1 1 2
1 2 1
1 1 1
3
5
;
y D Y.t/Y
1
.0/k D
1
3
2
4
2e
2t
C e
4t
e
2t
C e
4t
e
2t
C e
4t
e
2t
Ce
4t
2e
2t
C e
4t
e
2t
C e
4t
e
2t
Ce
4t
e
2t
C e
4t
2e
2t
Ce
4t
3
5
k.
10.3.14. If Y and Z are both fund amental matrices for y
0
D A.t/y, then Z D C Y , where C is a constant
invertib le matrix. Therefore, ZY
1
D C and Y Z
1
D C
1
.
10.3.16. (a) The Wronskian of fy
1
; y
2
; : : : ; y
n
g equals one when t D t
0
. Apply Theorem 10.3.3.
(b) Let Y be the matrix with columns fy
1
; y
2
; : : : ; y
n
g. From (a), Y is a fundamental matrix for
y
0
D A.t/y on .a; b/. From Exercise 10.3.15(b), so is Z D Y C if C is any invertible constant matrix.
194 Chapter 10
Linear Systems of D ifferential Equations
10.3.18. (a)
0
1
.t/ D Z
0
.t/Z.s/ D AZ.t/Z.s/ D A.t/ and
1
.0/ D Z.s/, since Z.0/ D I .
0
2
.t/ D
Z
0
.t Cs/ D AZ.t Cs/ D A
2
.t/ (since A is constant) and
2
.0/ D Z.s/. Applying Theorem 10.2.1 t o
the columns of
1
and
2
shows that
1
D
2
.
(b) With s D t, (a ) implies th at Z.t /Z.t/ D Z.0/ D I ; therefore .Z.t//
1
D Z.t/.
(c) e
0A
D I is analogous to e
oa
D e
0
D 1 when a is a scalar, while e
.tCs/A
D e
tA
e
sA
is analagous
to e
.tCs/a
D e
ta
e
sa
when a is a scalar.
10.4 CONSTANT COEFFICIENT HOMOGENEOUS SYSTEMS I
10.4.2.
1
4
ˇ
ˇ
ˇ
ˇ
5 4 3
3 5 4
ˇ
ˇ
ˇ
ˇ
D . C1=2/. C2/. Eigenvectors associated with
1
D 1=2 satisfy
3 3
4 4
x
1
x
2
D
0
0
, so x
1
D x
2
. Taking x
2
D 1 yields y
1
D
1
1
e
t=2
. Eigenvectors
associated with
2
D 2 satisfy
3
4
3
4
1 1
x
1
x
2
D
0
0
, so x
1
D x
2
. Taking x
2
D 1 yields
y
2
D
1
1
e
2t
. Hence y D c
1
1
1
e
t=2
C c
2
1
1
e
2t
.
10.4.4.
ˇ
ˇ
ˇ
ˇ
1 4
1 1
ˇ
ˇ
ˇ
ˇ
D . 1/. C 3/. Eigenvectors associated with
1
D 3 satisfy
2 4
1 2
x
1
x
2
D
0
0
, so x
1
D 2x
2
. Taking x
2
D 1 yields y
1
D
2
1
e
3t
. Eigenvectors
associated with
2
D 1 satisfy
2 4
1 2
x
1
x
2
D
0
0
, so x
1
D 2x
2
. Taking x
2
D 1 yields
y
2
D
2
1
e
t
. Hence y D c
1
2
1
e
3t
C c
2
2
1
e
t
.
10.4.6.
ˇ
ˇ
ˇ
ˇ
4 3
2 1
ˇ
ˇ
ˇ
ˇ
D .2/.1/. Eigenvectors associated with
1
D 2 satisfy
2 3
2 3
x
1
x
2
D
0
0
,
so x
1
D
3
2
x
2
. Taking x
2
D 2 yields y
1
D
3
2
e
2t
. Eigenvectors associated with
2
D 1 sat-
isfy
3 3
2 2
x
1
x
2
D
0
0
, so x
1
D x
2
. Taking x
2
D 1 yields y
2
D
1
1
e
t
. Hence y D
c
1
3
2
e
2t
C c
2
1
1
e
t
.
10.4.8.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 1 2
1 2 3
4 1 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . C 3/. C 1/. 2/. The eigenvectors associated with
with
1
D 3 satisfy the system with aug mented matrix
2
6
6
6
4
4 1 2
:
:
: 0
1 1 3
:
:
: 0
4 1 2
:
:
: 0
3
7
7
7
5
, which i s row
equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 2
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and x
2
D 2x
3
. Taking x
3
D 1 yields y
1
D
Section 10.4
Constant Coefficient Homogeneous Systems I
195
2
4
1
2
1
3
5
e
3t
. The eigenvectors associated with with
2
D 1 satisfy the system with augmented ma-
trix
2
6
6
6
4
2 1 2
:
:
: 0
1 1 3
:
:
: 0
4 1 0
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 4 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and x
2
D 4x
3
. Taking x
3
D 1 yields y
2
D
2
4
1
4
1
3
5
e
t
. The eigenvectors associated w ith with
3
D 2 satisfy the system with augmented matri x
2
6
6
6
4
1 1 2
:
:
: 0
1 4 3
:
:
: 0
4 1 3
:
:
: 0
3
7
7
7
5
, which is row equivalent
to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and x
2
D x
3
. Taking x
3
D 1 yields y
3
D
2
4
1
1
1
3
5
e
2t
.
Hence y D c
1
2
4
1
2
1
3
5
e
3t
C c
2
2
4
1
4
1
3
5
e
t
C c
3
2
4
1
1
1
3
5
e
2t
.
10.4.10.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
3 5 8
1 1 2
1 1 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . 1/. C 2/. 2/. The eigenvectors associated with
with
1
D 1 satisfy the system with augmented matrix
2
6
6
6
4
2 5 8
:
:
: 0
1 2 2
:
:
: 0
1 1 2
:
:
: 0
3
7
7
7
5
, which is row equiv-
alent to
2
6
6
6
4
1 0
2
3
:
:
: 0
0 1
4
3
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D
2
3
x
3
and x
2
D
4
3
x
3
. Taking x
3
D 3 yields y
1
D
2
4
2
4
3
3
5
e
t
. The eigenvectors associated with with
2
D 2 satisfy the system with augmented ma-
trix
2
6
6
6
4
5 5 8
:
:
: 0
1 1 2
:
:
: 0
1 1 1
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 1 0
:
:
: 0
0 0 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
2
and x
3
D 0. Taking x
2
D 1 yields y
2
D
2
4
1
1
0
3
5
e
2t
. The ei genvectors associated with with
196 Chapter 10
Linear Systems of D ifferential Equations
3
D 2 satisfy the system with augmented matrix
2
6
6
6
4
1 5 8
:
:
: 0
1 3 2
:
:
: 0
1 1 3
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0
7
4
:
:
: 0
0 1
5
4
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D
7
4
x
3
and x
2
D
5
4
x
3
. Taking x
3
D 4 yields y
3
D
2
4
7
5
4
3
5
e
2t
.
Hence y D c
1
2
4
2
4
3
3
5
e
t
C c
2
2
4
1
1
0
3
5
e
2t
C c
3
2
4
7
5
4
3
5
e
2t
.
10.4.12.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
4 1 4
4 3 2
1 1 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . 3/. C 2/. C 1/. The eigenvectors associated with
1
D 3 satisfy the system with augmented matrix
2
6
6
6
4
1 1 4
:
:
: 0
4 6 2
:
:
: 0
1 1 4
:
:
: 0
3
7
7
7
5
, which is row equiva-
lent t o
2
6
6
6
4
1 0 11
:
:
: 0
0 1 7
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D 11x
3
and x
2
D 7x
3
. Taking x
3
D 1 yields y
1
D
2
4
11
7
1
3
5
e
3t
. The eigenvectors associated with
2
D 2 satisfy the system with augmented matrix
2
6
6
6
4
6 1 4
:
:
: 0
4 1 2
:
:
: 0
1 1 1
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 2
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and x
2
D
2x
3
. Taking x
3
D 1 yields y
2
D
2
4
1
2
1
3
5
e
2t
. The eigenvectors associated wi th
3
D 1 satisfy the sys-
tem with augmented matrix
2
6
6
6
4
5 1 4
:
:
: 0
4 2 2
:
:
: 0
1 1 0
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
.
Hence x
1
D x
3
and x
2
D x
3
. Taking x
3
D 1 yields y
3
D
2
4
1
1
1
3
5
e
t
. Hence y D c
1
2
4
11
7
1
3
5
e
3t
C c
2
2
4
1
2
1
3
5
e
2t
C c
3
2
4
1
1
1
3
5
e
t
.
10.4.14.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
3 2 2
2 7 2
10 10 5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . C 5/. 5/
2
. The eigenvectors associated with
1
D
Section 10.4
Constant Coefficient Homogeneous Systems I
197
5 satisfy the system with augmented matrix
2
6
6
6
4
8 2 2
:
:
: 0
2 12 2
:
:
: 0
10 10 0
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0
1
5
:
:
: 0
0 1
1
5
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D
1
5
x
3
and x
2
D
1
5
x
3
. Taking x
3
D 5 yields y
1
D
2
4
1
1
5
3
5
e
5t
. The
eigenvectors associated with
2
D 5 satisfy the system with augmented matrix
2
6
6
6
4
2 2 2
:
:
: 0
2 2 2
:
:
: 0
10 10 10
:
:
: 0
3
7
7
7
5
,
which is row equivalent to
2
6
6
6
4
1 1 1
:
:
: 0
0 0 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
2
x
3
. Taking x
2
D 0 and x
3
D
1 yields y
2
D
2
4
1
0
1
3
5
e
5t
. Taking x
2
D 1 and x
3
D 0 yields y
3
D
2
4
1
1
0
3
5
e
5t
. Hence y D
c
1
2
4
1
1
5
3
5
e
5t
C c
2
2
4
1
0
1
3
5
e
5t
C c
3
2
4
1
1
0
3
5
e
5t
.
10.4.16.
ˇ
ˇ
ˇ
ˇ
7 4
6 7
ˇ
ˇ
ˇ
ˇ
D .5/.C5/. Eigenvectors associated with
1
D 5 satisfy
12 4
6 2
x
1
x
2
D
0
0
,
so x
1
D
x
2
3
. Taking x
2
D 3 yields y
1
D
1
3
e
5t
. Eigenvectors associated with
2
D 5 satisfy
2 4
6 12
x
1
x
2
D
0
0
, so x
1
D 2x
2
. Taking x
2
D 1 yield s y
2
D
2
1
e
5t
. The general
solution is y D c
1
1
3
e
5t
C c
2
2
1
e
5t
. Now y.0/ D
2
4
) c
1
1
3
C c
2
2
1
D
2
4
,
so c
1
D 2 and c
2
D 2. Therefore, y D
2
6
e
5t
C
4
2
e
5t
.
10.4.18.
ˇ
ˇ
ˇ
ˇ
21 12
24 15
ˇ
ˇ
ˇ
ˇ
D . 9/. C 3/. Eigenvectors associated with
1
D 9 satisfy
12 12
24 24
x
1
x
2
D
0
0
, so x
1
D x
2
. Taking x
2
D 1 yields y
1
D
1
1
e
9t
. Eigenvec-
tors associated with
2
D 3
24 12
24 12
x
1
x
2
D
0
0
, so x
1
D
1
2
x
2
. Taking x
2
D 2 yields
y
2
D
1
2
e
3t
. The general solution is y D c
1
1
1
e
9t
C c
2
1
2
e
3t
. Now y.0/ D
5
3
)
c
1
1
1
C c
2
1
2
D
5
3
, so c
1
D 7 and c
2
D 2. Therefore, y D
7
7
e
9t
2
4
e
3t
.
198 Chapter 10
Linear Systems of D ifferential Equations
10.4.20.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1
6
1
3
0
2
3
1
6
0
0 0
1
2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . C 1=2/. 1=2/
2
. The eigenvectors associated with wi th
1
D 1=2 satisfy the system with augmented matrix
2
6
6
6
4
2
3
1
3
0
:
:
: 0
2
3
1
3
0
:
:
: 0
0 0 1
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1
1
2
0
:
:
: 0
0 0 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D
x
2
2
and x
3
D 0. Taking x
2
D 2 yield s y
1
D
2
4
1
2
0
3
5
e
t=2
.
The eigenvectors associated wi th with
2
D
3
D 1=2 satisfy the system with augmented matrix
2
6
6
6
4
1
3
1
3
0
:
:
: 0
2
3
2
3
0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 1 0
:
:
: 0
0 0 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
2
and
x
3
is arbitrary. Taking x
2
D 1 and x
3
D 0 yields y
2
D
2
4
1
1
0
3
5
e
t=2
. Taking x
2
D 0 and x
3
D 1 yields
y
3
D
2
4
0
0
1
3
5
e
t=2
. The general sol ution is y D c
1
2
4
1
2
0
3
5
e
t=2
C c
2
2
4
1
1
0
3
5
e
t=2
C c
3
2
4
0
0
1
3
5
e
t=2
.
Now y.0/ D
2
4
4
7
1
3
5
) c
1
2
4
1
2
0
3
5
C c
2
2
4
1
1
0
3
5
C c
3
2
4
0
0
1
3
5
e
t=2
D
2
4
4
7
1
3
5
, so c
1
D 1, c
2
D 5, and
c
3
D 1. Hence y D
2
4
1
2
0
3
5
e
t=2
C
2
4
5
5
0
3
5
e
t=2
C
2
4
0
0
1
3
5
e
t=2
.
10.4.22.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
6 3 8
2 1 2
3 3 5
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . 1/. C 2/. 3/. The eigenvectors associated with
1
D 1 satisfy the system with augmented matrix
2
6
6
6
4
5 3 8
:
:
: 0
2 0 2
:
:
: 0
3 3 6
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. H ence x
1
D x
3
and x
2
D x
3
. Taking x
3
D yields y
1
D
2
4
1
1
1
3
5
e
t
. The
eigenvectors associated with
2
D 2 satisfy the system with augmented matrix
2
6
6
6
4
8 3 8
:
:
: 0
2 3 2
:
:
: 0
3 3 3
:
:
: 0
3
7
7
7
5
,
Section 10.4
Constant Coefficient Homogeneous Systems I
199
which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and x
2
D 0. Taking x
3
D 1 yields
y
2
D
2
4
1
0
1
3
5
e
2t
. The eigenvectors associated with
3
D 3 satisfy the system with augmented matrix
2
6
6
6
4
3 3 8
:
:
: 0
2 2 2
:
:
: 0
3 3 8
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 1 0
:
:
: 0
0 0 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
2
and x
3
D
0. Taking x
2
D 1 yields y
3
D
2
4
1
1
0
3
5
e
3t
. The general solution is y D c
1
2
4
1
1
1
3
5
e
t
C c
2
2
4
1
0
1
3
5
e
2t
C
c
3
2
4
1
1
0
3
5
e
3t
. Now y.0/ D
2
4
0
1
1
3
5
) c
1
2
4
1
1
1
3
5
C c
2
2
4
1
0
1
3
5
C c
3
2
4
1
1
0
3
5
D
2
4
0
1
1
3
5
, so c
1
D 2,
c
2
D 3, and c
3
D 1. Therefore, y D
2
4
2
2
2
3
5
e
t
2
4
3
0
3
3
5
e
2t
C
2
4
1
1
0
3
5
e
3t
.
10.4.24.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
3 0 1
11 2 7
1 0 3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . 2/. C 2/. 4/. The eigenvectors associated with
with
1
D 2 satisfy the system with augmented matrix
2
6
6
6
4
1 0 1
:
:
: 0
11 4 7
:
:
: 0
1 0 1
:
:
: 0
3
7
7
7
5
, which is row equiv-
alent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and x
2
D x
3
. Takin g x
3
D 1 yields y
1
D
2
4
1
1
1
3
5
e
2t
. The eigenvectors associated with w ith
2
D 2 satisfy the system with augmented ma-
trix
2
6
6
6
4
5 0 1
:
:
: 0
11 0 7
:
:
: 0
1 0 5
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 0
:
:
: 0
0 0 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
D 0
and x
2
is arbitrary. Taking x
3
D 1 yield s y
2
D
2
4
0
1
0
3
5
e
2t
. The eigenvectors associated with with
200 Chapter 10
Linear Systems of D ifferential Equations
3
D 4 satisfy the system with augmented matri x
2
6
6
6
4
1 0 1
:
:
: 0
11 6 7
:
:
: 0
1 0 1
:
:
: 0
3
7
7
7
5
, which is row equivalent
to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 3
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and x
2
D 3x
3
. Taking x
3
D 1 yield s y
3
D
2
4
1
3
1
3
5
e
4t
.
The general solu tion is y D c
1
2
4
1
1
1
3
5
e
2t
C c
2
2
4
0
1
0
3
5
e
2t
C c
3
2
4
1
3
1
3
5
e
4t
. Now y.0/ D
2
4
2
7
6
3
5
)
c
1
2
4
1
1
1
3
5
C c
2
2
4
0
1
0
3
5
C c
3
2
4
1
3
1
3
5
D
2
4
2
7
6
3
5
, so c
1
D 2, c
2
D 3, and c
3
D 4. Hence y D
2
4
2
2
2
3
5
e
2t
2
4
0
3
0
3
5
e
2t
C
2
4
4
12
4
3
5
e
4t
10.4.26.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
3 1 0
4 2 0
4 4 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D .C1/.2/
2
. The eigenvectors associated with
1
D 1 sat-
isfy the system with augmented matrix
2
6
6
6
4
4 1 0
:
:
: 0
4 1 0
:
:
: 0
4 4 3
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0
1
4
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
Hence x
1
D x
2
=4 and x
2
D x
3
. Taking x
3
D 4 yields y
1
D
2
4
1
4
4
3
5
e
t
. The eigenvectors associated
with with
2
D
3
D 2 satisfy the system with augmented matri x
2
6
6
6
4
1 1 0
:
:
: 0
4 4 0
:
:
: 0
4 4 0
:
:
: 0
3
7
7
7
5
, which is row
equivalent to
2
6
6
6
4
1 1 0
:
:
: 0
0 0 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
2
and x
3
is arbitrary. Taking x
2
D 1 and x
3
D 0
yields y
2
D
2
4
1
1
0
3
5
e
2t
. Taking x
2
D 0 and x
3
D 1 yields y
3
D
2
4
0
0
1
3
5
e
2t
. The general solution is
y D c
1
2
4
1
4
4
3
5
e
t
C c
2
2
4
1
1
0
3
5
e
2t
C c
3
2
4
0
0
1
3
5
e
2t
. Now y.0/ D
2
4
7
10
2
3
5
) c
1
2
4
1
4
4
3
5
C c
2
2
4
1
1
0
3
5
C
c
3
2
4
0
0
1
3
5
D
2
4
7
10
2
3
5
, so c
1
D 1, c
2
D 6, and c
3
D 2. Hence y D
2
4
1
4
4
3
5
e
t
C
2
4
6
6
2
3
5
e
2t
.
Section 10.5
Constant Coefficient Homogeneous Systems II
201
10.4.28. ( a) If y.t
0
/ D 0, then y is the solution of the initial value p roblem y
0
D Ay; y.t
0
/ D 0 . Sin ce
y 0 is a solution of this problem, Theorem 10.2.1 implies the conclusion.
(b) It is given that y
0
1
.t/ D Ay
1
.t/ for all t. Replacing t by t shows that y
0
1
.t / D Ay
1
.t / D
Ay
2
.t/ for all t. Since y
0
2
.t/ D y
0
1
.t / by the chain r ule, this implies that y
0
2
.t/ D Ay
2
.t/ for all t .
(c) If z.t/ D y
1
.t /, then z.t
2
/ D y
1
.t
1
/ D y
2
.t
2
/; therefore z and y
2
are both so lutions of the initial
value prob lem y
0
D Ay; y.t
2
/ D k, where k D y
2
.t
2
/.
10.4.42. The characteristic polynomial of A is p./ D
2
.a C b/ C ab ˛ˇ, so the eigenvalues of
A are
1
D
a C b
2
and
1
D
a C b C
2
, where D
p
.a b/
2
C 4˛ˇ; x
1
D
b a C
and
x
2
D
b a
are associated eigenvectors. Since > jb aj, if L
1
and L
2
are l ines t hrough
the origin parallel to x
1
and x
2
, then L
1
is in the first and third quadrants and L
2
is in the second and
fourth quadrants. The slope of L
1
is D
b a C
> 0. I f Q
0
D P
0
there are three possibilities:
(i) if ˛ˇ D ab, then
1
D 0 and P .t/ D P
0
, Q.t/ D Q
0
for all t > 0; (ii) if ˛ˇ < ab, then
1
> 0 and li m
t!1
P.t/ D lim
t!1
Q.t/ D 1 (monotonically); (iii) if ˛ˇ > ab, then
1
< 0 and
lim
t!1
P.t/ D lim
t!1
Q.t/ D 0 (monotonically). Now suppo se Q
0
¤ P
0
, so that the trajectory
cannot intersect L
1
, and assume for the moment that ( A) makes sense for all t > 0; that is, even if
one or the other of P and Q is negative. Since
2
> 0 it follows that either lim
t!1
P.t/ D 1 or
lim
t!1
Q.t/ D 1 (or both), and the trajectory is asymptotically parallel to L
2
. Therefore,the trajectory
must cross in to the third quadrant (so P .T / D 0 and Q.T / > 0 for some fini te T ) if Q
0
> P
0
, or into
the fourth quadrant (so Q.T / D 0 and P .T / > 0 for some fin ite T ) if Q
0
< P
0
.
10.5 CONSTANT COEFFICIENT HOMOGENEOUS SYSTEMS II
10.5.2.
ˇ
ˇ
ˇ
ˇ
1
1 2
ˇ
ˇ
ˇ
ˇ
D .C1/
2
. Hence
1
D 1. Eigenvectors satisfy
1 1
1 1
x
1
x
2
D
0
0
,
so x
1
D x
2
. Taking x
2
D 1 yields y
1
D
1
1
e
t
. For a second solution we need a vector u such that
1 1
1 1
u
1
u
2
D
1
1
. Let u
1
D 1 and u
2
D 0. Then y
2
D
1
0
e
t
C
1
1
te
t
. The general
solution is y D c
1
1
1
e
t
C c
2

1
0
e
t
C
1
1
te
t
.
10.5.4. y
0
D
ˇ
ˇ
ˇ
ˇ
3 1
1 1
ˇ
ˇ
ˇ
ˇ
D .2/
2
. Hence
1
D 2. Eigenvectors satisfy
1 1
1 1
x
1
x
2
D
0
0
,
so x
1
D x
2
. Taking x
2
D 1 yields y
1
D
1
1
e
2t
. For a secon d solution we need a vecto r u such th at
1 1
1 1
u
1
u
2
D
1
1
. Let u
1
D 1 and u
2
D 0. Then y
2
D
1
0
e
2t
C
1
1
te
2t
.
The general solution is y D c
1
1
1
e
2t
C c
2

1
0
e
2t
C
1
1
te
2t
.
10.5.6.
ˇ
ˇ
ˇ
ˇ
10 9
4 2
ˇ
ˇ
ˇ
ˇ
D .C4/
2
. Hence
1
D 4. Eigenvectors satisfy
6 9
4 6
x
1
x
2
D
0
0
,
so x
1
D
3
2
x
2
. Taking x
2
D 2 yields y
1
D
3
2
e
4t
. For a second solution we need a vector u such that
6 9
4 6
u
1
u
2
D
3
2
. Let u
1
D
1
2
and u
2
D 0. Then y
2
D
1
0
e
4t
2
C
3
2
te
4t
. The
202 Chapter 10
Linear Systems of D ifferential Equations
general solution is y D c
1
3
2
e
4t
C c
2

1
0
e
4t
2
C
3
2
te
4t
.
10.5.8.
2
4
2 1
4 6 1
0 4 2
3
5
D . 4/
2
. Hence
1
D 0 and
2
D
3
D 4. The eigenvectors
associated with
1
D 0 satisfy the system with augmented matrix
2
6
6
6
4
0 2 1
:
:
: 0
4 6 1
:
:
: 0
0 4 2
:
:
: 0
3
7
7
7
5
, which is
row equivalent to
2
6
6
6
4
1 0
1
2
:
:
: 0
0 1
1
2
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D
1
2
x
3
and x
2
D
1
2
x
3
. Taking x
3
D 2 yields
y
1
D
2
4
1
1
2
3
5
. The eigenvectors associated with
2
D 4 satisfy the system with augmented matrix
2
6
6
6
4
4 2 1
:
:
: 0
4 2 1
:
:
: 0
0 4 2
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0
1
2
:
:
: 0
0 1
1
2
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D
1
2
x
3
and
x
2
D
1
2
x
3
. Taking x
3
D 2 yields y
2
D
2
4
1
1
2
3
5
e
4t
. For a third solution we need a vector u such
that
2
4
4 2 1
4 2 1
0 4 2
3
5
2
4
u
1
u
2
u
3
3
5
D
2
4
1
1
2
3
5
. The augmented matrix of this system is row equivalent to
2
6
6
6
4
1 0
1
2
:
:
: 0
0 1
1
2
:
:
:
1
2
0 0 0
:
:
: 0
3
7
7
7
5
. Let u
3
D 0, u
1
D 0, and u
2
D
1
2
. Then y
3
D
2
4
0
1
0
3
5
e
4t
2
C
2
4
1
1
2
3
5
te
4t
. The
general solution is
y D c
1
2
4
1
1
2
3
5
C c
2
2
4
1
1
2
3
5
e
4t
C c
3
0
@
2
4
0
1
0
3
5
e
4t
2
C
2
4
1
1
2
3
5
te
4t
1
A
:
10.5.10.
2
4
1 1 1
2 2
1 3 1
3
5
D . 2/. C 2/
2
. Hence
1
D 2 and
2
D
3
D 2. The
eigenvectors associated with
1
D 2 satisfy the system with augmented matrix
2
6
6
6
4
3 1 1
:
:
: 0
2 2 2
:
:
: 0
1 3 3
:
:
: 0
3
7
7
7
5
,
Section 10.5
Constant Coefficient Homogeneous Systems II
203
which is row equivalent to
2
6
6
6
4
1 0 0
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D 0 and x
2
D x
3
. Taking x
3
D 1 yields
y
1
D
2
4
0
1
1
3
5
e
2t
. The eigenvectors associated with
2
D 2 satisfy the system with augmented ma-
trix
2
6
6
6
4
1 1 1
:
:
: 0
2 2 2
:
:
: 0
1 3 1
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and
x
2
D 0. Taking x
3
D 1 yields y
2
D
2
4
1
0
1
3
5
e
2t
. For a third solution we need a vector u such
that
2
4
1 1 1
2 2 2
1 3 1
3
5
2
4
u
1
u
2
u
3
3
5
D
2
4
1
0
1
3
5
. The augmented matrix of this system is row equivalent to
2
6
6
6
4
1 0 1
:
:
:
1
2
0 1 0
:
:
:
1
2
0 0 0
:
:
: 0
3
7
7
7
5
. Let u
3
D 0, u
1
D
1
2
, and u
2
D
1
2
. Then y
3
D
2
4
1
1
0
3
5
e
2t
2
C
2
4
1
0
1
3
5
te
2t
.
The general solution is
y D c
1
2
4
0
1
1
3
5
e
2t
C c
2
2
4
1
0
1
3
5
e
2t
Cc
3
0
@
2
4
1
1
0
3
5
e
2t
2
C
2
4
1
0
1
3
5
te
2t
1
A
:
10.5.12.
2
4
6 5 3
2 1 3
2 1 1
3
5
D . C 2/. 4/
2
. Hence
1
D 2 and
2
D
3
D 4. The
eigenvectors associated with
1
D 2 satisfy the system with augmented matrix
2
6
6
6
4
8 5 3
:
:
: 0
2 1 3
:
:
: 0
2 1 3
:
:
: 0
3
7
7
7
5
,
which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and x
2
D x
3
. Taking x
3
D 1
yields y
1
D
2
4
1
1
1
3
5
e
2t
. The eigenvectors associated with
2
D 4 satisfy the system with augmented
matrix
2
6
6
6
4
2 5 3
:
:
: 0
2 5 3
:
:
: 0
2 1 3
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
204 Chapter 10
Linear Systems of D ifferential Equations
and x
2
D x
3
. Taking x
3
D 1 yields y
2
D
2
4
1
1
1
3
5
e
4t
. For a third solution we need a vector u such
that
2
4
2 5 3
2 5 3
2 1 3
3
5
2
4
u
1
u
2
u
3
3
5
D
2
4
1
1
1
3
5
. The augmented matrix of this system is row equivalent to
2
6
6
6
4
1 0 1
:
:
:
1
2
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Let u
3
D 0, u
1
D
1
2
, and u
2
D 0. Then y
3
D
2
4
1
0
0
3
5
e
4t
2
C
2
4
1
1
1
3
5
te
4t
. The
general solution is y D c
1
2
4
1
1
1
3
5
e
2t
C c
2
2
4
1
1
1
3
5
e
4t
C c
3
0
@
2
4
1
0
0
3
5
e
4t
2
C
2
4
1
1
1
3
5
te
4t
1
A
.
10.5.14.
ˇ
ˇ
ˇ
ˇ
15 9
16 9
ˇ
ˇ
ˇ
ˇ
D .3/
2
. Hence
1
D 3. Eigenvectors satisfy
12 9
16 12
x
1
x
2
D
0
0
,
so x
1
D
3
4
x
2
. Takin g x
2
D 4 yields y
1
D
3
4
e
3t
. For a second solution we need a vector u such
that
12 9
16 12
u
1
u
2
D
3
4
. Let u
1
D
1
4
and u
2
D 0. Then y
2
D
1
0
e
3t
4
C
3
4
te
3t
.
The general solution is y D c
1
3
4
e
3t
C c
2

1
0
e
3t
4
C
3
4
te
3t
. Now y.0/ D
5
8
)
c
1
3
4
C c
2
1
4
0
D
5
8
, so c
1
D 2 and c
2
D 4. Therefore, y D
5
8
e
3t
12
16
te
3t
.
10.5.16.
ˇ
ˇ
ˇ
ˇ
7 24
6 17
ˇ
ˇ
ˇ
ˇ
D .5/
2
. Hence
1
D 5. Eigenvectors satisfy
12 24
6 12
x
1
x
2
D
0
0
,
so x
1
D 2x
2
. Taking x
2
D 1 yiel ds y
1
D
2
1
e
5t
. For a second solution we need a vector u such
that
12 24
6 12
u
1
u
2
D
2
1
. Let u
1
D
1
6
and u
2
D 0. Then y
2
D
1
0
e
5t
6
C
2
1
te
5t
.
The general solution is y D c
1
2
1
e
5t
C c
2

1
0
e
5t
6
C
2
1
te
5t
. Now y.0/ D
3
1
)
c
1
2
1
C c
2
1
6
0
D
3
1
, so c
1
D 1 and c
2
D 6. Therefore, y D
3
1
e
5t
12
6
te
5t
.
10.5.18.
2
4
1 1 0
1 1 2
1 1 1
3
5
D . 1/. C2/
2
. Hence
1
D 1 and
2
D
3
D 2. The
eigenvectors associated with
1
D 1 satisfy the system with augmented matrix
2
6
6
6
4
2 1 0
:
:
: 0
1 2 2
:
:
: 0
1 1 2
:
:
: 0
3
7
7
7
5
,
which is row equivalent to
2
6
6
6
4
1 0
2
3
:
:
: 0
0 1
4
3
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D
2
3
x
3
and x
2
D
4
3
x
3
. Taking
Section 10.5
Constant Coefficient Homogeneous Systems II
205
x
3
D 3 yields The eigenvectors associated with
2
D 2 satisfy t he system with augmented matrix
2
6
6
6
4
1 1 0
:
:
: 0
1 1 2
:
:
: 0
1 1 1
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 1 0
:
:
: 0
0 0 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
2
and
x
3
D 0. Taking x
2
D 1 yields y
2
D
2
4
1
1
0
3
5
e
2t
. For a third solution we need a vector u such
that
2
4
1 1 0
1 1 2
1 1 1
3
5
2
4
u
1
u
2
u
3
3
5
D
2
4
1
1
0
3
5
. The augmented matrix of this system is row equiva-
lent to
2
6
6
6
4
1 1 0
:
:
: 1
0 0 1
:
:
: 1
0 0 0
:
:
: 0
3
7
7
7
5
. Let u
2
D 0, u
1
D 1, and u
3
D 1. Then y
3
D
2
4
1
0
1
3
5
e
2t
C
2
4
1
1
0
3
5
te
2t
. The general solution is y D c
1
2
4
2
4
3
3
5
e
t
Cc
2
2
4
1
1
0
3
5
e
2t
Cc
3
0
@
2
4
1
0
1
3
5
e
2t
C
2
4
1
1
0
3
5
te
2t
1
A
.
Now y.0/ D
2
4
6
5
7
3
5
) c
1
2
4
2
4
3
3
5
C c
2
2
4
1
1
0
3
5
C c
3
2
4
1
0
1
3
5
D
2
4
6
5
7
3
5
, so c
1
D 2, c
2
D 3,
and c
3
D 1. Therefore, y D
2
4
4
8
6
3
5
e
t
C
2
4
2
3
1
3
5
e
2t
C
2
4
1
1
0
3
5
te
2t
.
10.5.20.
2
4
7 4 4
1 0 1
9 5 6
3
5
D . C 3/. 1/
2
. Hence
1
D 3 and
2
D
3
D 1. The
eigenvectors associated with
1
D 3 satisfy the system with augmented matrix
2
6
6
6
4
4 4 4
:
:
: 0
1 3 1
:
:
: 0
9 5 9
:
:
: 0
3
7
7
7
5
,
which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and x
2
D 0. Taking x
3
D 1 yields
y
1
D
2
4
1
0
1
3
5
e
3t
. The eigenvectors associated with
2
D 1 satisfy the system with augmented ma-
trix
2
6
6
6
4
8 4 4
:
:
: 0
1 1 1
:
:
: 0
9 5 5
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 0
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D 0
206 Chapter 10
Linear Systems of D ifferential Equations
and x
2
D x
3
. Taking x
3
D 1 yields y
2
D
2
4
0
1
1
3
5
e
t
. For a third solution we need a vector u such
that
2
4
8 4 4
1 1 1
9 5 5
3
5
2
4
u
1
u
2
u
3
3
5
D
2
4
0
1
1
3
5
. The augmented matrix of this system is row equivalent to
2
6
6
6
4
1 0 0
:
:
: 1
0 1 1
:
:
: 2
0 0 0
:
:
: 0
3
7
7
7
5
. Let u
3
D 0, u
1
D 1, and u
2
D 2. Then y
3
D
2
4
1
2
0
3
5
e
t
C
2
4
0
1
1
3
5
te
t
.
The general solution is y D c
1
2
4
1
0
1
3
5
e
3t
C c
2
2
4
0
1
1
3
5
e
t
C c
3
0
@
2
4
1
2
0
3
5
e
t
C
2
4
0
1
1
3
5
te
t
1
A
. Now
y.0/ D
2
4
6
9
1
3
5
) c
1
2
4
1
0
1
3
5
C c
2
2
4
0
1
1
3
5
C c
3
2
4
1
2
0
3
5
D
2
4
6
9
1
3
5
, so c
1
D 2, c
2
D 1, and
c
3
D 4. Therefore, y D
2
4
2
0
2
3
5
e
3t
C
2
4
4
9
1
3
5
e
t
2
4
0
4
4
3
5
te
t
.
10.5.22.
2
4
4 8 4
3 1 3
1 1 9
3
5
D . C 4/. 8/
2
. Hence
1
D 4 and
2
D
3
D 8. The
eigenvectors associated with
1
D 4 satisfy the system with augmented matrix
2
6
6
6
4
8 8 4
:
:
: 0
3 3 3
:
:
: 0
1 1 13
:
:
: 0
3
7
7
7
5
,
which is row equivalent to
2
6
6
6
4
1 1 0
:
:
: 0
0 0 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
2
and x
3
D 0. Taking x
2
D 1 yields
y
1
D
2
4
1
1
0
3
5
e
t
. The eigenvectors associated with
2
D 8 satisfy the system with augmented matrix
2
6
6
6
4
4 8 4
:
:
: 0
3 9 3
:
:
: 0
1 1 1
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Hence x
1
D x
3
and
x
2
D 0. Taking x
3
D 1 yields y
2
D
2
4
1
0
1
3
5
e
8t
. For a third solution we need a vector u such that
2
4
4 8 4
3 9 3
1 1 1
3
5
2
4
u
1
u
2
u
3
3
5
D
2
4
1
0
1
3
5
. The augmented matrix o f this system is row equivalent to
Section 10.5
Constant Coefficient Homogeneous Systems II
207
2
6
6
6
4
1 0 1
:
:
:
3
4
0 1 0
:
:
:
1
4
0 0 0
:
:
: 0
3
7
7
7
5
. Let u
3
D 0, u
1
D
3
4
, and u
2
D
1
4
. Then y
3
D
2
4
3
1
0
3
5
e
8t
4
C
2
4
1
0
1
3
5
te
8t
.
The general solution is c
1
2
4
1
1
0
3
5
e
t
Cc
2
2
4
1
0
1
3
5
e
8t
Cc
3
0
@
2
4
3
1
0
3
5
e
8t
4
C
2
4
1
0
1
3
5
te
8t
1
A
. Now y.0/ D
2
4
4
1
3
3
5
) c
1
2
4
1
1
0
3
5
C c
2
2
4
1
0
1
3
5
C c
3
2
4
3
4
1
4
0
3
5
D
2
4
4
1
3
3
5
, so c
1
D 1, c
2
D 3, and c
3
D 8.
Therefore, y D
2
4
1
1
0
3
5
e
4t
C
2
4
3
2
3
3
5
e
8t
C
2
4
8
0
8
3
5
te
8t
.
10.5.24.
2
4
5 1 1
1 9 3
2 2 4
3
5
D . 6/
3
. Hence
1
D 6. The eigenvectors satisfy the system
with augmented matrix
2
6
6
6
4
1 1 1
:
:
: 0
1 3 3
:
:
: 0
2 2 2
:
:
: 0
3
7
7
7
5
, which is row equival ent to
2
6
6
6
4
1 0 0
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
.
Hence x
1
D 0 and x
2
D x
3
. Taking x
3
D 1 yields y
1
D
2
4
0
1
1
3
5
e
6t
. For a second solution we need a
vector u such t hat
2
4
1 1 1
1 3 3
2 2 2
3
5
2
4
u
1
u
2
u
3
3
5
D
2
4
0
1
1
3
5
. The augmented matrix of this system is row
equivalent to
2
6
6
6
4
1 0 0
:
:
:
1
4
0 1 1
:
:
:
1
4
0 0 0
:
:
: 0
3
7
7
7
5
. Let u
3
D 0, u
1
D
1
4
, and u
2
D
1
4
. Then y
2
D
2
4
1
1
0
3
5
e
6t
4
C
2
4
0
1
1
3
5
te
6t
. For a third solution we need a vector v such that
2
4
1 1 1
1 3 3
2 2 2
3
5
2
4
v
1
v
2
v
3
3
5
D
2
6
4
1
4
1
4
0
3
7
5
.
The augmented matrix o f this system is row equivalent to
2
6
6
6
4
1 0 0
:
:
:
1
8
0 1 1
:
:
:
1
8
0 0 0
:
:
: 0
3
7
7
7
5
. Let v
3
D 0, v
1
D
1
8
,
and v
2
D
1
8
. Then y
3
D
2
4
1
1
0
3
5
e
6t
8
C
2
4
1
1
0
3
5
te
6t
4
C
2
4
0
1
1
3
5
t
2
e
6t
2
. The general solution is y D
208 Chapter 10
Linear Systems of D ifferential Equations
c
1
2
4
0
1
1
3
5
e
6t
C c
2
0
@
2
4
1
1
0
3
5
e
6t
4
C
2
4
0
1
1
3
5
te
6t
1
A
Cc
3
0
@
2
4
1
1
0
3
5
e
6t
8
C
2
4
1
1
0
3
5
te
6t
4
C
2
4
0
1
1
3
5
t
2
e
6t
2
1
A
:
10.5.26.
2
4
6 4 4
2 1 1
2 3 1
3
5
D .C2/
3
. Hence
1
D 2. The eigenvectors satisfy the sys-
tem with augmented matrix
2
6
6
6
4
4 4 4
:
:
: 0
2 1 1
:
:
: 0
2 3 3
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 0
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
.
Hence x
1
D 0 and x
2
D x
3
. Taking x
3
D 1 yields y
1
D
2
4
0
1
1
3
5
e
2t
. For a second solution we need a
vector u such that
2
4
4 4 4
2 1 1
2 3 3
3
5
2
4
u
1
u
2
u
3
3
5
D
2
4
0
1
1
3
5
. The augmented matri x of this system is row
equivalent to
2
6
6
6
4
1 0 0
:
:
: 1
0 1 1
:
:
: 1
0 0 0
:
:
: 0
3
7
7
7
5
. Let u
3
D 0, u
1
D 1, and u
2
D 1. Then y
2
D
2
4
1
1
0
3
5
e
2t
C
2
4
0
1
1
3
5
te
2t
. For a third solution we need a vect or v such that
2
4
4 4 4
2 1 1
2 3 3
3
5
2
4
v
1
v
2
v
3
3
5
D
2
4
1
1
0
3
5
. The augmented matrix of this system is row equivalent to
2
6
6
6
4
1 0 0
:
:
:
3
4
0 1 1
:
:
:
1
2
0 0 0
:
:
: 0
3
7
7
7
5
. Let v
3
D 0,
v
1
D
3
4
, and v
2
D
1
2
. Then y
3
D
2
4
3
2
0
3
5
e
2t
4
C
2
4
1
1
0
3
5
te
2t
C
2
4
0
1
1
3
5
t
2
e
2t
2
. The general
solution is y D c
1
2
4
0
1
1
3
5
e
2t
C c
2
0
@
2
4
1
1
0
3
5
e
2t
C
2
4
0
1
1
3
5
te
2t
1
A
Cc
3
0
@
2
4
3
2
0
3
5
e
2t
4
C
2
4
1
1
0
3
5
te
2t
C
2
4
0
1
1
3
5
t
2
e
2t
2
1
A
10.5.28.
2
4
2 12 10
2 24 11
2 24 8
3
5
D . C 6/
3
. Hence
1
D 6. The eigenvectors satisfy the
Section 10.5
Constant Coefficient Homogeneous Systems II
209
system with augmented matrix
2
6
6
6
4
4 12 10
:
:
: 0
2 18 11
:
:
: 0
2 24 14
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1
1
2
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
.
Hence x
1
D x
3
and x
2
D
x
3
2
. Taking x
3
D 2 yields y
1
D
2
4
2
1
2
3
5
e
6t
. For a second solu-
tion we need a vector u su ch that
2
4
4 12 10
2 18 11
2 24 14
3
5
2
4
u
1
u
2
u
3
3
5
D
2
4
2
1
2
3
5
. The augmented matrix
of this system is row equivalent t o
2
6
6
6
4
1 0 1
:
:
: 1
0 1
1
2
:
:
:
1
6
0 0 0
:
:
: 0
3
7
7
7
5
. Let u
3
D 0, u
1
D 1, and u
2
D
1
6
. Then y
2
D
2
4
6
1
0
3
5
e
6t
6
C
2
4
2
1
2
3
5
te
6t
. For a third solution we need a vector v such that
2
4
4 12 10
2 18 11
2 24 14
3
5
2
4
v
1
v
2
v
3
3
5
D
2
4
1
1
6
0
3
5
. The augmented matrix of this system is row equivalent to
2
6
6
6
4
1 0 1
:
:
:
1
3
0 1
1
2
:
:
:
1
36
0 0 0
:
:
: 0
3
7
7
7
5
. Let v
3
D 0, v
1
D
1
3
, and v
2
D
1
36
. Then y
3
D
2
4
12
1
0
3
5
e
6t
36
2
4
6
1
0
3
5
te
6t
6
C
2
4
2
1
2
3
5
t
2
e
6t
2
. The general solution is y D c
1
2
4
2
1
2
3
5
e
6t
C c
2
0
@
2
4
6
1
0
3
5
e
6t
6
C
2
4
2
1
2
3
5
te
6t
1
A
Cc
3
0
@
2
4
12
1
0
3
5
e
6t
36
2
4
6
1
0
3
5
te
6t
6
C
2
4
2
1
2
3
5
t
2
e
6t
2
1
A
:
10.5.30.
2
4
4 0 1
1 3 1
1 0 2
3
5
D .C3/
3
. Hence
1
D 3. The eigenvectors satisfy the sys-
tem with augmented matrix
2
6
6
6
4
1 0 1
:
:
: 0
1 0 1
:
:
: 0
1 0 1
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 0 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
.
Hence x
1
D x
3
and x
2
is arbitrary. Taking x
2
D 0 and x
3
D 1 yields y
1
D
2
4
1
0
1
3
5
e
3t
. Taking x
2
D
1 and x
3
D 0 yields y
2
D
2
4
0
1
0
3
5
e
3t
. For a third solution we need constants ˛ and ˇ and a vector u such
210 Chapter 10
Linear Systems of D ifferential Equations
that
2
4
1 0 1
1 0 1
1 0 1
3
5
2
4
u
1
u
2
u
3
3
5
D ˛
2
4
1
0
1
3
5
C ˇ
2
4
0
1
0
3
5
. The augmented matrix of this system is row
equivalent to
2
6
6
6
4
1 0 1
:
:
: ˛
0 0 0
:
:
: ˛ C ˇ
0 0 0
:
:
: 0
3
7
7
7
5
; hence the system has a solution if ˛ D ˇ D 1, whi ch yi elds
the eigenvector x
3
D
2
4
1
1
1
3
5
. Taking u
1
D 1 and u
2
D u
3
D 0 yields the solution y
3
D
2
4
1
0
0
3
5
e
3t
C
2
4
1
1
1
3
5
te
3t
. The general solution is y D c
1
2
4
1
0
1
3
5
e
3t
Cc
2
2
4
0
1
0
3
5
e
3t
C c
3
0
@
2
4
1
0
0
3
5
e
3t
C
2
4
1
1
1
3
5
te
3t
1
A
10.5.32.
2
4
3 1 0
1 1 0
1 1 2
3
5
D . C 2/
3
. Hence
1
D 2. The eigenvectors satisfy the
system with augmented matrix
2
6
6
6
4
1 1 0
:
:
: 0
1 1 0
:
:
: 0
1 1 0
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 1 0
:
:
: 0
0 0 0
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
.
Hence x
1
D x
2
and x
3
is arbitrary. Taking x
2
D 1 and x
3
D 0 yields y
1
D
2
4
1
1
0
3
5
e
2t
. Taking x
2
D
0 and x
3
D 1 yields y
2
D
2
4
0
0
1
3
5
e
2t
. For a third solution we need constants ˛ and ˇ and a vector u such
that
2
4
1 1 0
1 1 0
1 1 0
3
5
2
4
u
1
u
2
u
3
3
5
D ˛
2
4
1
1
0
3
5
C ˇ
2
4
0
0
1
3
5
. The augmented matrix of this system is row
equivalent to
2
6
6
6
4
1 1 0
:
:
: ˛
0 0 0
:
:
: ˛ C ˇ
0 0 0
:
:
: 0
3
7
7
7
5
; hence the system has a solution if ˛ D ˇ D 1, whi ch yi elds
the eigenvector x
3
D
2
4
1
1
1
3
5
. Taking u
1
D 1 and u
2
D u
3
D 0 yields the solut ion y
3
D
2
4
1
0
0
3
5
e
2t
C
2
4
1
1
1
3
5
te
2t
. The general solution is y D c
1
2
4
1
1
0
3
5
e
2t
C c
2
2
4
0
0
1
3
5
e
2t
C c
3
0
@
2
4
1
0
0
3
5
e
2t
C
2
4
1
1
1
3
5
te
2t
1
A
.
10.5.34.
y
0
3
Ay
3
D .
1
I A/ve
1
t
C .
1
I A/ute
1
t
C ue
1
t
C.
1
I A/x
t
2
e
1
t
2
C xte
1
t
D ue
1
t
xte
1
t
C ue
1
t
C 0 C xte
1
t
D 0:
Section 10.6
Constant Coefficient Homogeneous Systems III
211
Now suppose that c
1
y
1
C c
2
y
2
C c
3
y
3
D 0. Then
c
1
x C c
2
.u C tx/ C c
3
v C t u C
t
2
2
x
D 0: .A/
Differentiatin g this twice yields c
3
x D 0, so c
3
D 0 si nce x ¤ 0. Therefore,(A) reduces to (B) c
1
x C
c
2
.u C tx/ D 0. Differentiating this yields c
2
x D 0, so c
2
D 0 since x ¤ 0. Therefore,(B) reduces to
c
3
x D 0, so c
1
D 0 since x ¤ 0. Therefore,y
1
, y
2
, and y
3
are linearly independendent.
10.6 CONSTANT COEFFICIENT HOMOGENEOUS SYSTEMS III
10.6.2.
ˇ
ˇ
ˇ
ˇ
11 4
26 9
ˇ
ˇ
ˇ
ˇ
D . C 1/
2
C 4. The augmented matrix of .A .1 C 2i/ I / x D 0
is
2
4
10 2i 4
:
:
: 0
26 10 2i
:
:
: 0
3
5
, which is row equivalent t o
2
4
1
5Ci
13
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
.5 i/x
2
=13. Taking x
2
D 13 yields the eigenvector x D
5 i
13
. Taking real and imaginary parts of
e
t
.cos 2t C i sin 2t//
5 i
13
yields
y D c
1
e
t
5 cos 2t C sin 2t
13 cos 2t
C c
2
e
t
5 sin 2t cos 2t
13 si n 2t
:
10.6.4.
ˇ
ˇ
ˇ
ˇ
5 6
3 1
ˇ
ˇ
ˇ
ˇ
D . 2/
2
C 9. H ence, D 2 C 3i is an eigenvalue of A. The associated
eigenvectors satisfy .A .2 C 3i / I / x D 0. The augmented matrix of this system is
2
4
3 3i 6
:
:
: 0
3 3 3i
:
:
: 0
3
5
,
which is row equivalent to
2
4
1 1 i
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D .1 C i /x
2
. Takin g x
2
D 1 yields
x
1
D 1 C i , so x D
1 C i
1
is an eigenvector. Taking real and imaginary parts of e
2t
.cos 3t C
i sin 3t/
1 C i
1
yields y D c
1
e
2t
cos 3t si n 3t
cos 3t
C c
2
e
2t
sin 3t C cos 3t
sin 3t
.
10.6.6.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
3 3 1
1 5 3
3 7 3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . C 1/
. C 2/
2
C 4
. The augmented matrix of .A C
I /x D 0 is
2
6
6
6
4
2 3 1
:
:
: 0
1 4 3
:
:
: 0
3 7 4
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D
x
2
D x
3
. Taking x
3
D 1 yields y
1
D
2
4
1
1
1
3
5
e
t
. The augmented matrix of .A .2 C 2i /I / x D 0
212 Chapter 10
Linear Systems of D ifferential Equations
is
2
6
6
6
4
1 2i 3 1
:
:
: 0
1 3 2i 3
:
:
: 0
3 7 5 2i
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0
1Ci
2
:
:
: 0
0 1
1i
2
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D
.1 C i/
2
x
3
and x
2
D
.1 i/
2
x
3
. Taking x
3
D 2 yields the eigenvector x
2
D
2
4
1 C i
1 C i
2
3
5
. The real
and imaginary parts of e
2t
.cos 2t C i sin 2t/
2
4
1 C i
1 C i
2
3
5
are y
2
D e
2t
2
4
cos 2t sin 2t
cos 2t sin 2t
2 cos 2t
3
5
and
y
3
D e
2t
2
4
sin 2t C cos 2t
sin 2t C cos 2t
2 sin 2t
3
5
. Therefore,
y D c
1
2
4
1
1
1
3
5
e
t
C c
2
e
2t
2
4
cos 2t sin 2t
cos 2t sin 2t
2 cos 2t
3
5
C c
3
e
2t
2
4
sin 2t C cos 2t
sin 2t C cos 2t
2 sin 2t
3
5
:
10.6.8.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
3 1 3
4 1 2
4 2 3
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D .1/
. C 1/
2
C 4
. The augmented matrix of .AI /x D 0
is
2
6
6
6
4
4 1 3
:
:
: 0
4 2 2
:
:
: 0
4 2 2
:
:
: 0
3
7
7
7
5
, which is row equival ent to
2
6
6
6
4
1 0 1
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D x
2
D
x
3
. Taking x
3
D 1 yields y
1
D
2
4
1
1
1
3
5
e
t
. The augmented matri x of .A .1 C 2i /I / x D 0 is
2
6
6
6
4
2 2i 1 3
:
:
: 0
4 2i 2
:
:
: 0
4 2 4 2i
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0
1i
2
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D
1 i
2
x
3
and x
2
D x
3
. Taking x
3
D 2 yields the eigenvector x
2
D
2
4
1 C i
2
2
3
5
. The real and
imaginary parts of e
t
.cos 2t C i sin 2t/
2
4
1 C i
2
2
3
5
are y
2
D e
t
2
4
sin 2t cos 2t
2 cos 2t
2 cos 2t
3
5
and y
3
D
e
t
2
4
cos 2t sin 2t
2 sin 2t
2 sin 2t
3
5
. Therefore,
y D c
1
2
4
1
1
1
3
5
e
t
C c
2
e
t
2
4
sin 2t cos 2t
2 cos 2t
2 cos 2t
3
5
C c
3
e
t
2
4
cos 2t sin 2t
2 sin 2t
2 sin 2t
3
5
:
Section 10.6
Constant Coefficient Homogeneous Systems III
213
10.6.10.
1
3
ˇ
ˇ
ˇ
ˇ
7 3 5
2 5 3
ˇ
ˇ
ˇ
ˇ
D . 2/
2
C 1. The augmented matrix of .A .2 C i/I /x D 0 is
1
3
2
4
1 3i 5
:
:
: 0
2 1 3i
:
:
: 0
3
5
, which is row equivalent to
2
4
1
1C3i
2
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
1 C 3i
2
x
2
. Taking x
2
D 2 yields the eigenvector x D
1 C 3i
2
. Taking real and imaginary parts of
e
2t
.cos t C i sin t/
1 C 3i
2
yields
y D c
1
e
2t
cos t 3 sin t
2 cos t
C c
2
e
2t
sin t C 3 cos t
2 sin t
:
10.6.12.
ˇ
ˇ
ˇ
ˇ
34 52
20 30
ˇ
ˇ
ˇ
ˇ
D . 2/
2
C 16. The augmented matrix of .A .2 C 4i / I / x D 0
is
2
4
32 4i 52
:
:
: 0
20 32 4i
:
:
: 0
3
5
, which is row equivalent to
2
4
1
8Ci
5
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
.8 C i/
5
x
2
. Taking x
2
D 5 yields the eigenvector x D
8 i
5
. Taking real and imag inary parts of
e
2t
.cos 4tCi si n 4t/
8 i
5
yields y D c
1
e
2t
sin 4t 8 cos 4t
5 cos 4t
C c
2
e
2t
cos 4t 8 sin 4t
5 sin 4t
.
10.6.14.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
3 4 2
5 7 8
10 13 8
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . C 2/
. 2/
2
C 9
. The augmented matrix of .A C
2I /x D 0 is
2
6
6
6
4
5 4 2
:
:
: 0
5 9 8
:
:
: 0
10 13 6
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 2
:
:
: 0
0 1 2
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D
x
2
D 2x
3
. Taking x
3
D 1 yields y
1
D
2
4
2
2
1
3
5
e
2t
. The augmented matrix of .A .2 C 3i/I / x D 0 is
2
6
6
6
4
1 3i 4 2
:
:
: 0
5 5 3i 8
:
:
: 0
10 13 10 3i
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1 i
:
:
: 0
0 1 i
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D
.1 i /x
3
and x
2
D ix
3
. Taking x
3
D 1 yields t he eigenvector x
2
D
2
4
1 Ci
i
1
3
5
. The real
and imaginary parts of e
2t
.cos 3t C i sin 3t/
2
4
1 C i
i
1
3
5
are y
2
D e
2t
2
4
cos 3t sin 3t
sin 3t
cos 3t
3
5
and
214 Chapter 10
Linear Systems of D ifferential Equations
y
3
D c
3
e
2t
2
4
sin 3t C cos 3t
cos 3t
sin 3t
3
5
. Therefore,
y D c
1
2
4
2
2
1
3
5
e
2t
C c
2
e
2t
2
4
cos 3t sin 3t
sin 3t
cos 3t
3
5
C c
3
e
2t
2
4
sin 3t C cos 3t
cos 3t
sin 3t
3
5
:
10.6.16.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1 2 2
0 2 1
1 0
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . 2/
. 1/
2
C 1
. The augmented matrix of .A I /x D 0
is
2
6
6
6
4
0 2 2
:
:
: 0
0 1 1
:
:
: 0
1 0 1
:
:
: 0
3
7
7
7
5
, which is row equivalent t o
2
6
6
6
4
1 0 1
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D x
2
D 1.
Taking x
3
D 1 yields y
1
D
2
4
1
1
1
3
5
e
t
. The augmented matrix of .A .1 C i /I/ x D 0 is
2
6
6
6
4
i 2 2
:
:
: 0
0 1 i 1
:
:
: 0
1 0 1 i
:
:
: 0
3
7
7
7
5
,
which is row equivalent to
2
6
6
6
4
1 0 1 i
:
:
: 0
0 1
1Ci
2
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D .1 C i/x
3
and x
2
D
.1 C i/
2
x
3
.
Taking x
3
D 2 yields the eigenvector x
2
D
2
4
2 C 2i
1 C i
2
3
5
. The real and imaginary parts of e
4t
.cos t C
i sin t/
2
4
2 C 2i
1 C i
2
3
5
are y
2
D e
t
2
4
2 cos t 2 sin t
cos t sin t
2 cos t
3
5
and y
3
D c
3
e
t
2
4
2 sin t C 2 cos t
cos t C sin t
2 sin t
3
5
. Therefore,
y D c
1
2
4
1
1
1
3
5
e
t
C c
2
e
t
2
4
2 cos t 2 sin t
cos t sin t
2 cos t
3
5
C c
3
e
t
2
4
2 sin t C 2 cos t
cos t C sin t
2 sin t
3
5
:
10.6.18.
ˇ
ˇ
ˇ
ˇ
7 15
3 1
ˇ
ˇ
ˇ
ˇ
D . 4/
2
C 36. The augmented matrix of .A .4 C 6i / I / x D 0
is
2
4
3 6i 15
:
:
: 0
3 3 6i
:
:
: 0
3
5
, which is row equivalent to
2
4
1 1 C2i
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
.1C2i /x
2
. Taking x
2
D 1 yields the eigenvector x D
1 2i
1
. Taking real and i maginary parts of
e
4t
.cos 6tCi sin 6t/
1 2i
1
yields y D c
1
e
4t
2 sin 6t cos 6t
cos 6t
C c
2
e
4t
2 cos 6t sin 6t
sin 6t
.
Now y.0/ D
5
1
)
1 2
1 0
c
1
c
2
D
5
1
, so c
1
D 1, c
2
D 3, and y D e
4t
5 cos 6t C 5 sin 6t
cos 6t 3 sin 6t
.
Section 10.6
Constant Coefficient Homogeneous Systems III
215
10.6.20.
1
6
ˇ
ˇ
ˇ
ˇ
4 6 2
5 2 6
ˇ
ˇ
ˇ
ˇ
D
1
2
2
C
1
4
. The augmented matrix of
A
1 C i
2
I
x D 0
is
1
6
2
4
1 3i 2
:
:
: 0
5 1 3i
:
:
: 0
3
5
, which i s row equivalent to
2
4
1
1C3i
5
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
1 C 3i
5
x
2
. Taking x
2
D 5 yields the eigenvector x D
1 C 3i
5
. Taking real and imaginary parts of
e
t=2
.cos t=2Ci sin t=2/
1 C 3i
5
yields y D c
1
e
t=2
cos t=2 3 sin t=2
5 cos t=2
C c
2
e
t=2
sin t=2 C 3 cos t=2
5 sin t=2
.
Now y.0/ D
1
1
)
1 3
5 0
c
1
c
2
D
1
1
, so c
1
D
1
5
, c
2
D
2
5
, and y D e
t=2
cos.t=2/ C sin.t=2/
cos.t=2/ C 2 sin.t=2/
.
10.6.22.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
4 4 0
8 10 20
2 3 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . 8/
. 2/
2
C 4
. The augmented matrix of .A
8I /x D 0 is
2
6
6
6
4
0 4 0
:
:
: 0
8 6 20
:
:
: 0
2 3 6
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 2
:
:
: 0
0 1 2
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D
x
2
D 2x
3
. Taking x
3
D 2 yields y
1
D
2
4
2
2
1
3
5
e
8t
. The augmented matrix of .A .2 C 2i/I / x D 0 is
2
6
6
6
4
2 2i 4 0
:
:
: 0
8 8 2i 20
:
:
: 0
2 3 4 2i
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 2 C 2i
:
:
: 0
0 1 2i
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D
.2 2i /x
3
and x
2
D 2ix
3
. Taking x
3
D 1 yield s the eigenvector x
2
D
2
4
2 2i
2i
1
3
5
. The real and
imaginary parts of e
2t
.cos 2t C i sin 2t/
2
4
2 2i
2i
1
3
5
are y
2
D e
2t
2
4
2 cos 2t C 2 sin 2t
2 sin 2t
2 cos 2t
3
5
and y
3
D
e
2t
2
4
2 sin 2t C 2 cos 2t
2 cos 2t
sin 2t
3
5
, so the general solution is y D c
1
2
4
2
2
1
3
5
e
8t
Cc
2
e
2t
2
4
2 cos 2t C 2 sin 2t
2 sin 2t
2 cos 2t
3
5
C
c
3
e
2t
2
4
2 sin 2t C 2 cos 2t
2 cos 2t
sin 2t
3
5
. Now y.0/ D
2
4
8
6
5
3
5
)
2
4
2 2 2
2 0 2
1 1 0
3
5
2
4
c
1
c
2
c
3
3
5
D
2
4
8
6
5
3
5
, so c
1
D 2,
c
2
D 3, c
3
D 1, and y D
2
4
4
4
2
3
5
e
8t
C e
2t
2
4
4 cos 2t C 8 sin 2t
6 sin 2t C 2 cos 2t
3 cos 2t C sin 2t
3
5
.
10.6.24.
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
4 4 4
10 3 15
2 3 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D . 8/.
2
C 16/. The augmented matrix of .A 8I /x D 0 is
216 Chapter 10
Linear Systems of D ifferential Equations
2
6
6
6
4
4 4 4
:
:
: 0
10 5 15
:
:
: 0
2 3 7
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 2
:
:
: 0
0 1 1
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D 2x
3
and x
2
D x
3
. Taking x
3
D 1 yield s y
1
D
2
4
2
1
1
3
5
e
8t
. The augmented matrix of .A 4iI / x D 0 is
2
6
6
6
4
4 4i 4 4
:
:
: 0
10 3 4i 15
:
:
: 0
2 3 1 4i
:
:
: 0
3
7
7
7
5
, which is row equivalent to
2
6
6
6
4
1 0 1 C i
:
:
: 0
0 1 1 C 2i
:
:
: 0
0 0 0
:
:
: 0
3
7
7
7
5
. Therefore,x
1
D
.1 i /x
3
and x
2
D .1 2i/x
3
. Taking x
3
D 1 yields the eigenvector x
2
D
2
4
1 i
1 2i
1
3
5
. The
real and imaginary parts of .cos 4t C i sin 4t/
2
4
1 i
1 2i
1
3
5
are y
2
D
2
4
cos 4t C sin 4t
cos 4t C 2 sin 4t
cos 4t
3
5
and y
3
D
2
4
sin 4t cos 4t
sin 4t 2 cos 4t
sin 4t
3
5
, so the general solution is y D c
1
2
4
2
1
1
3
5
e
8t
C c
2
2
4
cos 4t C sin 4t
cos 4t C 2 sin 4t
cos 4t
3
5
C
c
3
2
4
sin 4t cos 4t
sin 4t 2 cos 4t
sin 4t
3
5
. Now y.0/ D
2
4
16
14
6
3
5
)
2
4
2 1 1
1 1 2
1 1 0
3
5
2
4
c
1
c
2
c
3
3
5
D
2
4
16
14
6
3
5
, so c
1
D 3,
c
2
D 3, c
3
D 7, and y D
2
4
6
3
3
3
5
e
8t
C
2
4
10 cos 4t 4 sin 4t
17 cos 4t sin 4t
3 cos 4t 7 sin 4t
3
5
.
10.6.28. (a) From the quadratic formul a the root s are
k
1
D
kuk
2
kv
2
k C
p
.kuk
2
kv
2
k/
2
C 4.u; v/
2
2.u; v/
k
2
D
kuk
2
kv
2
k
p
.kuk
2
kv
2
k/
2
C 4.u; v/
2
2.u; v/
:
Clearly k
1
> 0 and k
2
< 0. Moreover,
k
1
k
2
D
.kuk
2
kv
2
k/
2
.kuk
2
kv
2
k/
2
C 4.u; v/
2
4.u; v/
2
D 1:
(b) Since k
2
D 1= k
1
,
u
.2/
1
D u k
2
v D u C
1
k
1
v D
1
k
1
.v C k
1
u/ D
1
k
1
v
.1/
1
v
.2/
1
D v C k
2
u D v
1
k
1
u D
1
k
1
.u k
1
v/ D
1
k
1
u
.1/
1
:
Section 10.6
Constant Coefficient Homogeneous Systems III
217
10.6.30.
ˇ
ˇ
ˇ
ˇ
15 10
25 15
ˇ
ˇ
ˇ
ˇ
D
2
C25. The augmented matrix of .A5iI /x D 0 is
2
4
15 5i 10
:
:
: 0
25 15 5i
:
:
: 0
3
5
,
which is row equivalent to
2
4
1
3Ci
5
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
.3 i/
5
x
2
. Taking x
2
D 5 yields the
eigenvector x D
3 i
5
, so u D
3
5
and v D
1
0
. The quad ratic equation is 3k
2
33kC3 D
0, with positive root k :0902. Routine calculations yield U
:5257
:8507
, V
:8507
:5257
.
10.6.32.
ˇ
ˇ
ˇ
ˇ
3 15
3 3
ˇ
ˇ
ˇ
ˇ
D
2
C36. The augmented matrix of .A6iI /x D 0 is
2
4
3 6i 15
:
:
: 0
3 3 6i
:
:
: 0
3
5
,
which is row equ ivalent to
2
4
1 1 2i
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D .1 2i/x
2
. Taking x
2
D 1
yields the eigenvector x D
1 C 2i
1
, so u D
1
1
and v D
2
0
. The quadratic equation is
2k
2
C 2k C 2 D 0, with positive root k 1:6180. Routine calculatio ns yield U
:9732
:2298
,
V
:2298
:9732
.
10.6.34.
ˇ
ˇ
ˇ
ˇ
5 12
6 7
ˇ
ˇ
ˇ
ˇ
D . C 1/
2
C 36. The augmented matrix of .A .1 C 6i /I /x D 0
is
2
4
6 6i 12
:
:
: 0
6 6 6i
:
:
: 0
3
5
, which is row equivalent to
2
4
1 .1 C i/
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
.1 C i/x
2
. Taking x
2
D 1 yields the eigenvector x D
1 C i
1
, so u D
1
1
and v D
1
0
.
The quadratic equation is k
2
k 1 D 0, with positive root k 1:6180. Routine calculatio ns yield
U
:5257
:8507
, V
:8507
:5257
.
10.6.36.
ˇ
ˇ
ˇ
ˇ
4 9
5 2
ˇ
ˇ
ˇ
ˇ
D . C 1/
2
C 36. The augmented matrix of .A .1 C 6i /I /x D 0
is
2
4
3 6i 9
:
:
: 0
5 3 6i
:
:
: 0
3
5
, which is row equivalent to
2
4
1
36i
5
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
3 6i
5
x
2
. Taking x
2
D 5 yields the eigenvector x D
3 6i
5
, so u D
3
5
and v D
6
0
. The
quadratic equation is 18k
2
C 2k C 18 D 0, with positive root k 1:0571. Routine calculations yield
U
:8817
:4719
, V
:4719
:8817
.
10.6.38.
ˇ
ˇ
ˇ
ˇ
1 5
20 1
ˇ
ˇ
ˇ
ˇ
D . C 1/
2
C 100. The augmented matrix of .A .1 C 10i/I /x D 0
218 Chapter 10
Linear Systems of D ifferential Equations
is
2
4
10i 5
:
:
: 0
20 10i
:
:
: 0
3
5
, which is row equivalent to
2
4
1
i
2
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
i
2
x
2
.
Taking x
2
D 2 yields th e eigenvector x D
i
2
, so u D
0
2
and v D
1
0
. Since .u; v/ D 0 we
just normalize u and v to obtain U D
0
1
, V D
1
0
.
10.6.40.
ˇ
ˇ
ˇ
ˇ
7 6
12 5
ˇ
ˇ
ˇ
ˇ
D . C 1/
2
C 36. The augmented matrix of .A .1 C 6i /I /x D 0
is
2
4
6 6i 6
:
:
: 0
12 6 6i
:
:
: 0
3
5
, which is row equivalent to
2
4
1
1i
2
:
:
: 0
0 0
:
:
: 0
3
5
. Therefore,x
1
D
1 i
2
x
2
. Taking x
2
D 2 yields the eigenvector x D
1 i
2
, so u D
1
2
and v D
1
0
. The
quadratic equation is k
2
4k C 1 D 0, with positive root k :2361. Routine calculations yield
U
:5257
:8507
, V
:8507
:5257
.
10.7 VARIATION OF PARA METERS FOR NONHOMOGENEOUS LINEAR SYSTEMS
10.7.2. Y D
3e
t
e
2t
e
t
2e
2t
; u
0
D Y
1
f D
1
5
2e
t
e
t
e
2t
3e
2t
50e
37
10e
3t
D
20e
4t
2e
2t
10e
5t
C 6e
t
;
u D
e
2t
5e
4t
2e
5t
6e
t
; y
p
D Y u D
13e
3t
C 3e
3t
e
3t
11e
3t
.
10.7.4. Y D
e
2t
e
t
2e
2t
e
t
; u
0
D Y
1
f D
e
2t
e
2t
2e
t
e
t
2
2e
t
D
2e
2t
2e
t
2e
2t
4e
t
;
u D
2e
t
e
2t
e
2t
4e
t
; y
p
D Y u D
5 3e
t
5e
t
6
.
10.7.6. Y D
sin t cos t
cos t sin t
; u
0
D Y
1
f D
sin t cos t
cos t sin t
1
t
D
t cos t C sin t
t sin t cos t
;
u D
t sin t
t cos t
; y
p
D Y u D
t
0
.
10.7.8. Y D
2
4
e
3t
e
2t
e
t
e
3t
0 3e
t
e
3t
e
2t
7e
t
3
5
; u
0
D Y
1
f D
1
6
2
4
3e
3t
6e
3t
3e
3t
4e
2t
6e
2t
2e
2t
e
t
0 e
t
3
5
2
4
1
e
t
e
t
3
5
D
1
6
2
4
3e
3t
9e
2t
8e
t
C 4e
2t
e
2t
e
t
3
5
; u D
1
12
2
4
9e
2t
2e
3t
16e
t
4e
2t
e
2t
2e
t
3
5
; y
p
D Y u D
1
6
2
4
3e
t
C 4
6e
t
4
10
3
5
.
10.7.10. Y D
2
4
e
t
e
t
te
t
e
t
e
t
3e
t
te
t
e
t
e
t
te
t
3
5
; u
0
D Y
1
f D
1
18
2
4
9e
t
0 9e
t
3e
t
.3 2t/ 6te
t
9e
t
6e
t
6e
t
0
3
5
2
4
e
t
e
t
e
t
3
5
D
1
3
2
4
0
e
2t
.3 2t/
2e
2t
3
5
; u D
1
3
2
4
0
e
2t
.2 t/
e
2t
3
5
; y
p
D Y u D
1
3
2
4
2e
t
e
t
2e
t
3
5
.
Section 10.7
Variation of Parameters for Nonhomogeneous Linear Systems
219
10.7.12. u
0
D Y
1
f D
1
2t
e
t
e
t
e
t
e
t
t
t
2
D
1
2
e
t
.t C 1/
e
t
.1 t/
; u D
1
2
e
t
.t C 2/
e
t
.2 t/
;
y
p
D Y u D
t
2
e
t
e
t
e
t
e
t
e
t
.t C 2/
e
t
.2 t/
D
t
2
2t
.
10.7.14. u
0
D Y
1
f D
1
3
2 e
t
e
t
2
e
2t
e
2t
D
1
3
2e
2t
e
3t
2e
2t
e
3t
; u D
1
9
3e
2t
Ce
3t
e
3t
3e
2t
;
y
p
D Y u D
1
9
2 e
t
e
t
2
3e
2t
C e
3t
e
3t
3e
2t
D
1
9
5e
2t
e
3t
e
3t
5e
2t
.
10.7.16. u
0
D Y
1
f D
1
t
2
1
t e
t
e
t
t
t
2
1
t
2
1
D
t e
t
t e
t
; u D
1
2
2e
t
C t
2
t
2
2e
t
;
y
p
D Y u D
1
2
t e
t
e
t
t
2e
t
Ct
2
t
2
2e
t
D
1
2
te
t
.t C 2/ C t
3
2
te
t
.t 2/ C t
3
C 2
.
10.7.18. u
0
D Y
1
f D
1
3
2
4
e
5t
e
4t
e
3t
2e
2t
e
t
1
e
2t
2e
t
1
3
5
2
4
e
t
0
0
3
5
D
1
3
2
4
e
4t
2e
t
e
t
3
5
; u D
1
12
2
4
e
4t
8e
t
4e
t
3
5
;
y
p
D Y u D
1
12
2
4
e
5t
e
2t
0
e
4t
0 e
t
e
3t
1 1
3
5
2
4
e
4t
8e
t
4e
t
3
5
D
1
4
2
4
3e
t
1
e
t
3
5
.
10.7.20. u
0
D Y
1
f D
1
2t
2
4
e
2t
te
t
te
t
C e
2t
1 te
t
te
t
1
2 0 2
3
5
2
4
e
t
0
e
t
3
5
D
2
4
1
e
2t
0
3
5
; u D
1
4
2
4
2t
e
2t
0
3
5
;
y
p
D Y u D Y D
1
4t
2
4
e
t
e
t
t
e
t
e
t
e
t
e
t
e
t
0
3
5
2
4
2t
e
2t
0
3
5
D
e
t
4t
2
4
2t C 1
2t 1
2t C 1
3
5
.
10.7.22. (c) If y
p
D Y u, then y
0
p
D Y
0
u CY u
0
D AY u CY u
0
, so (E) y
0
p
D Ay
p
CY u
0
. However, from
the derivation of the method of variation of parameters in Section 9.4, Y u
0
D f as d efined in the solution
of (a). This and (E) imply the conclusion.
(d) Since Y u
0
D f with f as defined in the solution of (a), u
1
; u
2
; : : : ; u
n
satisfy the condi tions required
in the derivation of the method of variation of parameters in Section 9.4; hence, y
p
D c
1
y
1
C c
2
y
2
C
C c
n
y
n
is a particular solution of ( A ).
CHAPTER 1 1
Boundary Value Problems and Fourier
Expansions
11.1 EI GEN VA LUE PROBLEMS FOR y
00
C y D 0
11.1.2. From Theorem 11.1.2 with L D ,
n
D n
2
, y
n
D sin nx, n D 1; 2; 3; : : :
11.1.4. From Theorem 11.1.4 with L D ,
n
D
.2n 1/
2
4
, y
n
D sin
.2n 1/x
2
, n D 1; 2; 3; : : : ;
11.1.6. From Theorem 11.1.6 with L D ,
0
D 0, y
0
D 1,
n
D n
2
, y
1n
D cos nx, y
2n
D sin nx,
n D 1; 2; 3; : : :
11.1.8. From Theorem 11.1.5 with L D 1,
n
D
.2n 1/
2
2
4
, y
n
D cos
.2n 1/ x
2
, n D 1; 2; 3; : : :
11.1.10. From Theorem 11.1.6 with L D 1,
0
D 0, y
0
D 1,
n
D n
2
2
, y
1n
D cos nx, y
2n
D
sin n x, n D 1; 2; 3; : : :
11.1.12. From Theorem 11.1.6 with L D 2,
0
D 0, y
0
D 1,
n
D
n
2
2
4
, y
1n
D cos
nx
2
, y
2n
D
sin
nx
2
, n D 1; 2; 3; : : :
11.1.14. From Theorem 11.1.5 wit h L D 3,
n
D
.2n 1/
2
2
36
, y
n
D cos
.2n 1/ x
6
, n D 1; 2; 3; : : :
11.1.16. From Theorem 11.1.3 wit h L D 5,
n
D
n
2
2
25
, y
n
D cos
nx
5
, n D 1; 2; 3; : : :
11.1.18. From Theorem 11.1.1, any eig envalues of Problem 11.1.4 must be positive. If > 0, then
every solution of y
00
C y D 0 is of the form y D c
1
cos
p
x C c
2
sin
p
x where c
1
and c
2
are
constants. Therefore, y
0
D
p
.c
1
sin
p
x C c
2
cos
p
x/. Since y
0
.0/ D 0, c
2
D 0. Therefore,
y D c
1
cos
p
x. Since y.L/ D 0, c
1
cos
p
L D 0. To make c
1
cos
p
L D 0 with c
1
¤ 0 we must
choose
p
D
.2n 1/
2L
, where n is a positive integer. Therefore,
n
D
.2n 1/
2
2
4L
2
is an eigenvalue
and y
n
D cos
.2n 1/ x
2L
is an associated eigenfunct ion.
221
222 Chapter 11
Boun dary Value Problems and Fourier Expansions
11.1.20. If r is a positive integer, then
Z
L
L
cos
r x
L
dx D
L
r
sin
r x
L
ˇ
ˇ
ˇ
ˇ
L
L
D 0, so y
0
D 1 is ort hogonal
to all the other eigenfunctions. If m and n are distinct positive integers, then
Z
L
0
cos
mx
L
cos
nx
L
dx D
1
2
Z
L
L
cos
mx
L
cos
nx
L
dx D 0, from Example 11.1.4.
11.1.22. Let m and n be distinct positive integers. From th e identity cos A cos B D
1
2
Œcos.A B/ C
cos.A C B/ with A D .2m 1/x=2L and B D .2n 1/x=2L,
Z
L
0
cos
.2m 1/ x
2L
cos
.2n 1/ x
2L
dx D
1
2
Z
L
0
cos
.m n/x
L
C cos
.m C n 1/x
L
dx D 0:
11.1.24. If y D c
1
C c
2
x, then y
0
.0/ D 0 implies that c
2
D 0, so y D c
1
. Now
Z
L
0
y.x/ dx D
c
1
Z
L
0
dx D c
1
L D 0 only if c
1
D 0. Therefore,zero is not an eigenvalue.
If y D c
1
cosh kx C c
2
sinh kx, then y
0
.0/ D 0 implies that c
2
D 0, so y D c
1
cosh kx. Now
Z
L
0
y.x/ dx D c
1
Z
L
0
cosh kx dx D c
1
sinh kL
k
D 0 with k > 0 only if c
1
D 0. Therefore, there are no
negative ei genvalues.
If y D c
1
cos kx C c
2
sin kx, then y
0
.0/ D 0 implies that c
2
D 0, so y D c
1
cos kx. Now
Z
L
0
y.x/ dx D c
1
Z
L
0
cos kx dx D c
2
sin kL
k
D 0 if k D
n
L
, where n is a positive integer. Therefore,
n
D
n
2
2
L
2
and y
n
D cos
nx
L
, n D 1; 2; 3; : : : .
11.1.26. If y D c
1
C c
2
.x L/, then y
0
.L/ D 0 implies that c
2
D 0, so y D c
1
. Now
Z
L
0
y.x/ dx D
c
1
Z
L
0
dx D c
1
L D 0 only if c
1
D 0. Therefore,zero is not an eigenvalue.
If y D c
1
cosh k.x L/Cc
2
sinh k.x L/, then y
0
.L/ D 0 i mplies that c
2
D 0, so y D c
1
cosh k.x
L/. Now
Z
L
0
y.x/ dx D c
1
Z
L
0
cosh k.x L/ dx D c
1
sinh kL
k
D 0 with k > 0 only if c
1
D 0.
Therefore,there are no negative eigenvalues.
If y D c
1
cos k.x L/Cc
2
sin k.x L/, then y
0
.L/ D 0 i mplies that c
2
D 0, so y D c
1
cos k.x L/.
Now
Z
L
0
y.x/ dx D c
1
Z
L
0
cos k.x L/ dx D c
2
sin kL
k
D 0 if k D
n
L
, where n i s a positive integer.
Therefore,
n
D
n
2
2
L
2
and y
n
D cos
n.x L/
L
, or, equivalently, y
n
D cos
nx
L
, n D 1; 2; 3; : : : .
Section 11.2
Fourier Expansions I
223
11.2 FOURIER EXPANSIONS I
11.2.2.
a
0
D
1
2
Z
1
1
.2 x/ dx D
Z
1
0
2 dx D 2I
a
n
D
Z
1
1
.2 x/ cos nx dx D 4
Z
1
0
cos nx dx D
4
n
sin nx
ˇ
ˇ
ˇ
ˇ
1
0
D 0I
b
n
D
Z
1
1
.2 x/ sin nx dx D 2
Z
1
0
x sin nx dx
D
2
n
"
x cos nx
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
cos n x dx
#
D
2
n
"
cos n
1
n
sin nx
ˇ
ˇ
ˇ
ˇ
1
0
#
D .1/
n
2
n
I
F .x/ D 2 C
2
1
X
nD1
.1/
n
n
sin n x. From Theorem 11.2.4,
F .x/ D
8
<
:
2; x D 1;
2 x; 1 < x < 1;
2; x D 1:
11.2.4. Since f is even, b
n
D 0 for n 1; a
0
D
Z
1
0
.1 3x
2
/ dx D .x x
3
/
ˇ
ˇ
ˇ
ˇ
1
0
D 0; if n 1, then
a
n
D 2
Z
1
0
.1 3x
2
/ cos nx dx D
2
n
"
.1 3x
2
/ sin nx
ˇ
ˇ
ˇ
ˇ
1
0
C 6
Z
1
0
x sin nx dx
#
D
12
n
2
2
"
x cos nx
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
cos n x dx
#
D
12
n
2
2
"
cos n
1
n
sin nx
ˇ
ˇ
ˇ
ˇ
1
0
#
D .1/
nC1
12
n
2
2
I
F .x/ D
12
2
1
X
nD1
.1/
n
cos nx
n
2
. From Theorem 11.2.4, F .x/ D 1 3x
2
, 1 x 1.
11.2.6. Since f is odd, a
n
D 0 if n 0;
b
1
D
2
Z
0
x cos x sin x dx D
1
Z
0
x sin 2x dx
D
1
2
x cos 2x
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos 2x dx
D
1
2
sin 2x
2
ˇ
ˇ
ˇ
ˇ
0
D
1
2
:
224 Chapter 11
Boun dary Value Problems and Fourier Expansions
if n 2, then
b
n
D
2
Z
0
x cos x sin nx dx D
1
Z
0
xŒsin.n C 1/x C sin.n 1/x dx
D
1
x
cos.n C 1/x
n C 1
C
cos.n 1/x
n 1
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos.n C 1/x
n C 1
C
cos.n 1/x
n 1
dx
D .1/
n
1
n C 1
C
1
n 1
C
1
sin.n C 1/x
.n C 1/
2
C
sin.n 1/x
.n 1/
2
ˇ
ˇ
ˇ
ˇ
0
D .1/
n
2n
n
2
1
I
F .x/ D
1
2
sin x C 2
1
X
nD2
.1/
n
n
n
2
1
sin nx. Fr om Theorem 11.2.4, F .x/ D x cos x, x .
11.2.8. Since f is even, b
n
D 0 if n 1; a
0
D
1
Z
0
x sin x dx D
1
x cos x
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos x dx
D
1C
sin x
ˇ
ˇ
ˇ
ˇ
0
D 1; a
1
D
2
Z
0
x sin x cos x dx D
1
Z
0
x sin 2x dx D
1
2
x cos 2x
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos 2x dx
D
1
2
C
sin 2x
4
ˇ
ˇ
ˇ
ˇ
0
D
1
2
; if n 2, then
a
n
D
2
Z
0
x sin x cos nx dx D
1
Z
0
xŒsin.n C 1/x sin.n 1/x dx
D
1
x
cos.n 1/x
n 1
cos.n C 1/x
n C 1
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos.n 1/x
n 1
cos.n C 1/x
n C 1
dx
D .1/
nC1
1
n 1
1
n C 1
1
sin.n 1/x
.n 1/
2
sin.n C 1/x
.n C 1/
2
ˇ
ˇ
ˇ
ˇ
0
D .1/
nC1
2
n
2
1
I
F .x/ D 1
1
2
cos x 2
1
X
nD2
.1/
n
n
2
1
cos nx. From Theorem 11.2.4, F .x/ D x sin x, x .
11.2.10. Since f is even, b
n
D 0 if n 0; a
0
D
Z
1=2
0
cos x dx D
sin x
ˇ
ˇ
ˇ
ˇ
1=2
0
D
1
; a
1
D
2
Z
1=2
0
cos
2
x dx D
Z
1=2
0
.1 cos 2x/ dx D
1
2
sin 2x
2
ˇ
ˇ
ˇ
ˇ
1=2
0
D
1
2
; if n 2, then
a
n
D 2
Z
1=2
0
cos x cos nx dx D
Z
1=2
0
Œcos.n C 1/x C cos.n 1/x dx
D
1
sin.n C 1/x
n C 1
C
sin.n 1/x
n 1
ˇ
ˇ
ˇ
ˇ
1=2
0
D
1
1
n C 1
1
n 1
cos
n
2
D
2
.n
2
1/
cos
n
2
D
8
<
:
.1/
mC1
2
.4m
2
1/
if n D 2m;
0 if n D 2m C 1I
F .x/ D
1
C
1
2
cos x
2
1
X
nD1
.1/
n
4n
2
1
cos 2nx. From Theorem 11.2.4, F .x/ D f .x/, 1 x 1.
Section 11.2
Fourier Expansions I
225
11.2.12. Since f is odd, a
n
D 0 if n 0; b
1
D 2
Z
1=2
0
sin
2
2x dx D
Z
1=2
0
.1 cos 4x/ dx D
1
2
sin 4x
4
ˇ
ˇ
ˇ
ˇ
1=2
0
D
1
2
; if n 2, then
b
n
D 2
Z
1=2
0
sin x sin n x dx D
Z
1=2
0
Œcos.n 1/x cos.n C 1/x dx
D
1
sin.n 1/x
n 1
sin.n C 1/x
n C 1
ˇ
ˇ
ˇ
ˇ
1=2
0
D
2n
.n
2
1/
cos
n
2
D
(
.1/
mC1
4m
4m
2
1
if n D 2m;
0 if n D 2m C 1I
F .x/ D
1
2
sin x
4
1
X
nD1
.1/
n
n
4n
2
1
sin 2nx. From Theorem 11.2.4,
F .x/ D
8
ˆ
ˆ
ˆ
ˆ
<
ˆ
ˆ
ˆ
ˆ
:
0; 1 x <
1
2
;
1
2
; x D
1
2
;
sin x;
1
2
< x <
1
2
;
1
2
; x D
1
2
;
0;
1
2
< x 1:
11.2.14. Since f is even, b
n
D 0 if n 1;
a
0
D
Z
1=2
0
x sin x dx D
1
"
x cos x
ˇ
ˇ
ˇ
ˇ
1=2
0
Z
1=2
0
cos x dx
#
D
sin x
2
ˇ
ˇ
ˇ
ˇ
1=2
0
D
1
2
I
a
1
D 2
Z
1=2
0
x sin x cos x dx D
Z
1=2
0
x sin 2x dx
D
1
2
"
x cos 2 x
ˇ
ˇ
ˇ
ˇ
1=2
0
Z
1=2
0
cos 2x dx
#
D
1
4
C
sin 2x
4
2
ˇ
ˇ
ˇ
ˇ
1=2
0
D
1
4
I
if n 2, then
a
n
D 2
Z
1=2
0
x sin x cos nx dx D
Z
1=2
0
xŒsin.n C 1/x sin.n 1/x dx
D
1
"
x
cos.n 1/x
n 1
cos.n C 1/x
n C 1
ˇ
ˇ
ˇ
ˇ
1=2
0
Z
1=2
0
cos.n 1/x
n 1
cos.n C1/x
n C 1
dx
#
D
1
2
cos.n 1/=2
n 1
cos.n C 1/=2
n C 1
1
2
sin.n 1/=2
.n 1/
2
sin.n C 1/=2
.n C 1/
2
D
1
n
n
2
1
sin
n
2
C
2
2
n
2
C 1
.n
2
1/
2
cos
n
2
D
8
ˆ
ˆ
<
ˆ
ˆ
:
.1/
m
2
2
4m
2
C 1
.4m
2
1/
2
if n D 2m;
.1/
m
1
4
2m C 1
m.m C 1/
if n D 2m C 1I
226 Chapter 11
Boun dary Value Problems and Fourier Expansions
F .x/ D
1
2
C
1
4
cos xC
2
2
1
X
nD1
.1/
n
4n
2
C 1
.4n
2
1/
2
cos 2nxC
1
4
1
X
nD1
.1/
n
2n C 1
n.n C 1/
cos.2nC1/x:
From Theorem 11.2.4,
F .x/ D
8
ˆ
ˆ
ˆ
ˆ
<
ˆ
ˆ
ˆ
ˆ
:
0; 1 x <
1
2
;
1
4
; x D
1
2
;
x sin x;
1
2
< x <
1
2
;
1
4
; x D
1
2
;
0;
1
2
< x 1:
11.2.16. Note that
Z
0
1
x
2
g.x/ dx D
Z
1
0
x
2
g.x/ dx; therefore, a
0
D
1
2
Z
0
1
x
2
dx C
Z
1
0
.1 x
2
/ dx
D
1
2
Z
1
0
dx D
1
2
, and if n 1, then
a
n
D
Z
0
1
x
2
cos nx dx C
Z
1
0
.1 x
2
/ cos nx dx D
Z
1
0
cos nx dx D
sin nx
n
ˇ
ˇ
ˇ
ˇ
1
0
D 0
and
b
n
D
Z
0
1
x
2
sin nx dx C
Z
1
0
.1 x
2
/ sin nx dx D
Z
1
0
.1 2x
2
/ sin nx dx
D
1
n
"
.1 2x
2
/ cos nx
ˇ
ˇ
ˇ
ˇ
1
0
C4
Z
1
0
x cos nx dx
#
D
1 C cos n
n
4
n
2
2
"
x sin nx
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
sin nx dx
#
D
1 C cos n
n
4 cos nx
n
3
3
ˇ
ˇ
ˇ
ˇ
1
0
D
1 C cos n
n
C
4.1 cos n/
n
3
3
D
8
ˆ
<
ˆ
:
1
m
if n D 2m;
8
.2m C 1/
3
3
if n D 2m C 1I
F .x/ D
1
2
C
1
1
X
nD1
1
n
sin 2nx C
8
3
1
X
nD0
1
.2n C 1/
3
sin.2n C 1/x:
From Theorem 11.2.4,
F .x/ D
8
ˆ
ˆ
ˆ
ˆ
<
ˆ
ˆ
ˆ
ˆ
:
1
2
; x D 1;
x
2
; 1 < x < 0;
1
2
; x D 0;
1 x
2
; 0 < x < 1;
1
2
; x D 1:
Section 11.2
Fourier Expansions I
227
11.2.18. a
0
D
1
6
Z
2
3
2 dx C
Z
2
2
3 dx C
Z
3
2
1 dx
D
5
2
. If n 1, then
a
n
D
1
3
Z
3
3
f .x/ cos
nx
3
dx
D
1
3
Z
2
3
2 cos
nx
3
dx C
Z
2
2
3 cos
nx
3
dx C
Z
3
2
cos
nx
3
dx
D
3
n
sin
2n
3
;
b
n
D
1
3
Z
2
3
2 sin
nx
3
dx C
Z
2
2
3 sin
nx
3
dx C
Z
3
2
sin
nx
3
dx
D
1
n
cos n cos
2n
3
I
F .x/ D
5
2
C
3
1
X
nD1
1
n
sin
2n
3
cos
nx
3
C
1
1
X
nD1
1
n
cos n cos
2n
3
sin
nx
3
:
11.2.20. (a) a
0
D
1
2
Z
e
x
dx D
e
x
2
ˇ
ˇ
ˇ
ˇ
D
sinh
. If n 1 then (A) a
n
D
1
Z
e
x
cos nx dx and
(B) b
n
D
1
Z
e
x
sin nx dx. Integrating (B) by parts yields
b
n
D
1
e
x
sin nx
ˇ
ˇ
ˇ
ˇ
n
Z
e
x
cos nx dx
D na
n
: .C/
Integrating (A) by parts yields
a
n
D
1
e
x
cos nx
ˇ
ˇ
ˇ
ˇ
C n
Z
e
x
sin nx dx
D .1/
n
2 sin h
C nb
n
D .1/
n
2 sin h
n
2
a
n
;
from (C). Therefore, a
n
D
2 sin h
.1/
n
n
2
C 1
. Now (C) implies that b
n
D
2 sin h
.1/
nC1
n
n
2
C 1
. Therefore,
F .x/ D
sinh
1 C 2
1
X
nD1
.1/
n
n
2
C 1
cos nx 2
1
X
nD1
.1/
n
n
n
2
C 1
sin nx
!
:
(b) From Theorem 11.2.4, F ./ D cosh , so
sinh
1 C 2
1
X
nD1
1
n
2
C 1
!
D cosh , which implies
the stated result.
11.2.24. Since f is even, b
n
D 0, n 1, a
0
D
1
Z
0
cos kx dx D
sin kx
k
ˇ
ˇ
ˇ
ˇ
0
D
sin k
k
; if n 1 then
a
n
D
2
Z
0
cos kx cos nx dx D
1
Z
0
Œcos.n k/x C cos.n C k/x dx
D
1
sin.n k/x
n k
C
sin.n C k/x
n C k
ˇ
ˇ
ˇ
ˇ
0
D
cos n sin kx
1
n C k
1
n k
D .1/
nC1
2k sin k
.n
2
k
2
/
I
F .x/ D
sin k
"
1
k
2k
1
X
nD1
.1/
n
n
2
k
2
cos nx
#
.
228 Chapter 11
Boun dary Value Problems and Fourier Expansions
11.2.26. Since f is continuous on ŒL; L and f .L/ D f .L/, Theorem 11.2.4 implies that
f .x/ D a
0
C
1
X
nD1
a
n
cos
nx
L
C b
n
sin
nx
L
; L x L;
if a
0
D
1
2L
Z
L
L
f .x/ dx, and, for n 1,
a
n
D
1
L
Z
L
L
f .x/ cos
nx
L
dx D
1
n
"
f .x/ sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
L
Z
L
L
f
0
.x/ sin
nx
L
dx
#
D
L
n
2
2
"
f
0
.x/ cos
nx
L
ˇ
ˇ
ˇ
ˇ
L
L
Z
L
L
f
00
.x/ cos
nx
L
dx
#
D
L
n
2
2
Z
L
L
f
00
.x/ cos
nx
L
dx
(since f
0
.L/ D f
0
.L/), and
b
n
D
1
L
Z
L
L
f .x/ sin
nx
L
dx D
1
n
"
f .x/ cos
nx
L
ˇ
ˇ
ˇ
ˇ
L
L
Z
L
L
f
0
.x/ cos
nx
L
dx
#
D
1
n
Z
L
L
f
0
.x/ cos
nx
L
dx ( since f .L/ D f .L/)
D
L
n
2
2
"
f
0
.x/ sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
L
Z
L
L
f
00
.x/ sin
nx
L
dx
#
D
L
n
2
2
Z
L
L
f
00
.x/ sin
nx
L
dx:
If f
000
is integrable on ŒL; L, then
a
n
D
L
n
2
2
Z
L
L
f
00
.x/ cos
nx
L
dx D
L
2
n
3
3
"
f
000
.x/ sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
L
Z
L
L
f
000
.x/ sin
nx
L
dx
#
D
L
2
n
3
3
Z
L
L
f
000
.x/ sin
nx
L
dx:
11.2.28. The Fourier series is a
0
C
1
X
nD1
a
n
cos
nx
L
C b
n
sin
nx
L
where
a
0
D
1
2L
Z
L
L
f .x/ dx D
1
2L
"
Z
0
L
f .x/ dx C
Z
L
0
f .x/ dx
#
: .A/
Since
Z
0
L
f .x/ dx D
Z
0
L
f .x C L/ dx D
Z
L
0
f .x/ dx, (A) implies that a
0
D 0. If n 1, then
a
n
D
1
L
Z
L
L
f .x/ cos
nx
L
dx D
1
L
"
Z
0
L
f .x/ cos
nx
L
dx C
Z
L
0
f .x/ cos
nx
L
dx
#
: .B/
Since
Z
0
L
f .x/ cos
nx
L
dx D
Z
0
L
f .x C L/ cos
nx
L
dx D
Z
L
0
f .x/ cos
n.x C L/
L
dx
D .1/
nC1
Z
L
0
f .x/ cos
nx
L
dx;
Section 11.3
Fourier Expansions II
229
(B) implies that a
2n1
D A
n
and a
2n
D 0, n 1. A similar argument showsthat b
2n1
D B
n
and
b
2n
D 0, n 1.
11.2.30.(b) Let
0
D 1 and
2m
D cos
mx
L
,
2m1
D sin
mx
L
, m 1. Then c
0
D a
0
and c
2m
D a
m
,
c
2m1
D b
m
, m 1. Since
Z
L
L
2
0
.x/ dx D 2L an d
Z
L
L
2
2m1
.x/ dx D
1
2
Z
L
L
1 cos
2mx
L
dx D
L,
Z
L
L
2
2m
.x/ dx D
1
2
Z
L
L
1 C cos
2mx
L
dx D L, m 1, Exercise 12.2.29(d) implies the conclu-
sion.
11.3 FOURIER EXPANSIONS II
11.3.2. a
0
D
Z
1
0
.1 x/ dx D
.1 x/
2
2
ˇ
ˇ
ˇ
ˇ
1
0
D
1
2
; if n 1,
a
n
D 2
Z
1
0
.1 x/ cos nx dx D
2
n
"
.1 x/ sin nx
ˇ
ˇ
ˇ
ˇ
1
0
C
Z
1
0
sin nx dx
#
D
2
n
2
2
cos nx
ˇ
ˇ
ˇ
ˇ
1
0
D
2
n
2
2
Œ1 .1/
n
D
8
<
:
4
.2m 1/
2
2
if n D 2m 1;
0 if n D 2mI
C.x/ D
1
2
C
4
2
1
X
nD1
1
.2n 1/
2
cos.2n 1/x:
11.3.4. a
0
D
1
Z
0
sin kx dx D
cos kx
k
ˇ
ˇ
ˇ
ˇ
0
D
1 cos k
k
; if n 1, then
a
n
D
2
Z
0
sin kx cos nx dx D
1
Z
0
Œsin.n C k/x sin.n k/x dx
D
1
cos.n k/x
n k
cos.n C k/x
n C k
ˇ
ˇ
ˇ
ˇ
0
D
1
cos.n k/ 1
n k
cos.n Ck/ 1
n C k
D
2kŒ1 .1/
n
cos k
.n
2
k
2
/
I
C.x/ D
1 cos k
k
2k
1
X
nD1
Œ1 .1/
n
cos k
n
2
k
2
cos nx:
11.3.6. a
0
D
1
L
Z
L
0
.x
2
L
2
/ dx D
1
L
x
3
3
L
2
x
ˇ
ˇ
ˇ
ˇ
L
0
D
2L
2
3
; if n 1,
a
n
D
2
L
Z
L
0
.x
2
L
2
/ cos
nx
L
dx D
2
n
"
.x
2
L
2
/ sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
2
Z
L
0
x sin
nx
L
dx
#
D
4L
n
2
2
"
x cos
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
cos
nx
L
dx
#
D .1/
n
4L
2
n
2
2
4L
2
n
3
3
sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
D .1/
n
4L
2
n
2
2
I
C.x/ D
2L
2
3
C
4L
2
2
1
X
nD1
.1/
n
n
2
cos
nx
L
:
230 Chapter 11
Boun dary Value Problems and Fourier Expansions
11.3.8. a
0
D
Z
0
e
x
dx D e
x
ˇ
ˇ
ˇ
ˇ
0
D
e
1
; if n 1, then
a
n
D
2
Z
0
e
x
cos nx dx D
2
e
x
cos nx
ˇ
ˇ
ˇ
ˇ
0
n
Z
0
e
x
sin nx dx
D
2
.1/
n
e
1 ne
x
sin nx
ˇ
ˇ
ˇ
ˇ
0
n
2
Z
0
e
x
cos nx dx
D
2
Œ.1/
n
e
1 n
2
a
n
I
.1 C n
2
/a
n
D
2
Œ.1/
n
e
1; a
n
D
2
.n
2
C 1/
Œ.1/
n
e
1;
C.x/ D
e
1
C
2
1
X
nD1
Œ.1/
n
e
1
.n
2
C 1/
cos nx:
11.3.10. a
0
D
1
L
Z
L
0
.x
2
2Lx/ dx D
1
L
x
3
3
Lx
2
ˇ
ˇ
ˇ
ˇ
L
0
D
2L
2
3
; if n 1,
a
n
D
2
L
Z
L
0
.x
2
2Lx/ cos
nx
L
dx D
2
n
"
.x
2
2Lx/ sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
2
Z
L
0
.x L/ sin
nx
L
dx
#
D
4L
n
2
2
"
.x L/ cos
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
cos
nx
L
dx
#
D
4L
2
n
2
2
4L
3
n
3
3
sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
D
4L
2
n
2
2
I
C.x/ D
2L
2
3
C
4L
2
2
1
X
nD1
1
n
2
cos
nx
L
:
11.3.12. b
n
D 2
Z
1
0
.1 x/ sin nx dx D
2
n
"
.1 x/ cos n x
ˇ
ˇ
ˇ
ˇ
1
0
C
Z
1
0
cos nx dx
#
D
2
n
C
2
n
2
2
sin nx
ˇ
ˇ
ˇ
ˇ
1
0
D
2
n
; S.x/ D
2
1
X
nD1
1
n
sin nx.
11.3.14. b
n
D
2
L
Z
L=2
0
sin
nx
L
dx D
2
n
cos
nx
L
ˇ
ˇ
ˇ
ˇ
L=2
0
D
2
n
h
1 cos
n
2
i
;
S.x/ D
2
1
X
nD1
1
n
h
1 cos
n
2
i
sin
nx
L
:
11.3.16.
b
1
D
2
Z
0
x sin
2
x dx D
1
Z
0
x.1 cos 2x/ dx D
x
2
2
ˇ
ˇ
ˇ
ˇ
0
1
Z
0
x cos 2x dx
D
2
1
2
x sin 2x
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos 2x dx
D
2
C
sin 2x
4
ˇ
ˇ
ˇ
ˇ
0
D
2
I
Section 11.3
Fourier Expansions II
231
if n 2, then
b
n
D
2
Z
0
x sin x sin nx dx D
1
Z
0
xŒcos.n 1/x cos.n C 1/x dx
D
1
x
sin.n 1/x
n 1
sin.n C 1/x
n C 1
ˇ
ˇ
ˇ
ˇ
0
Z
0
sin.n 1/x
n 1
sin.n C 1/x
n C 1
dx
D
1
cos.n 1/x
.n 1/
2
cos.n C 1/x
.n C 1/
2
ˇ
ˇ
ˇ
ˇ
0
D
1
1
.n 1/
2
1
.n C 1/
2
.1/
nC1
1
D
4n
.n
2
1/
2
.1/
nC1
1
D
8
<
:
0 if n D 2m 1;
16m
.4m
2
1/
if n D 2mI
S.x/ D
2
sin x
16
1
X
nD1
n
.4n
2
1/
2
sin 2nx:
11.3.18. c
n
D
2
L
Z
L
0
cos
.2n 1/x
2L
dx D
4
.2n 1/
sin
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
D .1/
nC1
4
.2n 1/
;
C
M
.x/ D
4
1
X
nD1
.1/
n
2n 1
cos
.2n 1/x
2L
:
11.3.20.
d
n
D 2
Z
1
0
x cos
.2n 1/ x
2
dx
D
4
.2n 1/
"
x sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
sin
.2n 1/ x
2
dx
#
D
4
.2n 1/
"
.1/
nC1
C
2
.2n 1/
cos
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
4
.2n 1/
.1/
n
C
2
.2n 1/
I
C
M
.x/ D
4
1
X
nD1
.1/
n
C
2
.2n 1/
cos
.2n 1/ x
2
:
11.3.22.
c
n
D
2
Z
0
cos x cos
.2n 1/x
2
dx D
1
Z
0
cos.2n C 1/x
2
C
cos.2n 3/x
2
dx
D
2
sin.2n C 1/x=2
2n C 1
C
sin.2n 3/x=2
2n 3
ˇ
ˇ
ˇ
ˇ
0
D .1/
n
2
1
2n C 1
C
1
2n 3
D .1/
n
4.2n 1/
.2n 3/.2n C 1/
I
232 Chapter 11
Boun dary Value Problems and Fourier Expansions
C
M
.x/ D
4
1
X
nD1
.1/
n
2n 1
.2n 3/.2n C1/
cos
.2n 1/x
2
:
11.3.24.
c
n
D
2
L
Z
L
0
.Lx x
2
/ cos
.2n 1/ x
2L
dx
D
4
.2n 1/
"
.Lx x
2
/ sin
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
.L 2x/ sin
.2n 1/ x
2L
dx
#
D
8L
.2n 1/
2
2
"
.L 2x/ cos
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
C 2
Z
L
0
cos
.2n 1/ x
2L
dx
#
D
8L
2
.2n 1/
2
2
C
32L
2
.2n 1/
3
3
sin
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
D
32L
2
.2n 1/
3
3
sin
.2n 1/x
2
D
8L
2
.2n 1/
2
2
C .1/
n1
32L
2
.2n 1/
3
3
I
C
M
.x/ D
8L
2
2
1
X
nD1
1
.2n 1/
2
1 C
4.1/
n
.2n 1/
cos
.2n 1/x
2L
:
11.3.26.
d
n
D
2
L
Z
L
0
x
2
sin
.2n 1/x
2L
dx
D
4
.2n 1/
"
x
2
cos
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
2
Z
L
0
x cos
.2n 1/x
2L
dx
#
D
16L
.2n 1/
2
2
"
x sin
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
sin
.2n 1/x
2L
dx
#
D .1/
nC1
16L
2
.2n 1/
2
2
C
32L
2
.2n 1/
3
3
cos
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
D .1/
nC1
16L
2
.2n 1/
2
2
32L
2
.2n 1/
3
3
I
S
M
.x/ D
16L
2
2
1
X
nD1
1
.2n 1/
2
.1/
n
C
2
.2n 1/
sin
.2n 1/x
2L
:
11.3.28.
d
n
D
2
Z
0
cos x sin
.2n 1/x
2
dx D
1
Z
0
sin.2n C 1/x
2
C
sin.2n 3/x
2
dx
D
2
cos.2n C1/x=2
2n 1
C
cos.2n 3/x=2
2n 3
ˇ
ˇ
ˇ
ˇ
0
D
2
1
2n C1
C
1
2n 3
D
4.2n 1/
.2n 3/.2n C 1/
I
Section 11.3
Fourier Expansions II
233
S
M
.x/ D
4
1
X
nD1
2n 1
.2n 3/.2n C1/
sin
.2n 1/x
2
:
11.3.30.
d
n
D
2
L
Z
L
0
.Lx x
2
/ sin
.2n 1/ x
2L
dx
D
4
.2n 1/
"
.Lx x
2
/ cos
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
.L 2x/ cos
.2n 1/x
2L
dx
#
D
8L
.2n 1/
2
2
"
.L 2x/ sin
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
C 2
Z
L
0
sin
.2n 1/ x
2L
dx
#
D .1/
n
8L
2
.2n 1/
2
2
32L
2
.2n 1/
3
3
cos
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
D .1/
n
8L
2
.2n 1/
2
2
C
32L
2
.2n 1/
3
3
I
S
M
.x/ D
8L
2
2
1
X
nD1
1
.2n 1/
2
.1/
n
C
4
.2n 1/
sin
.2n 1/ x
2L
:
11.3.32. a
0
D
1
L
Z
L
0
.3x
4
4Lx
3
/ dx D
1
L
3x
5
5
Lx
4
ˇ
ˇ
ˇ
ˇ
L
0
D
2L
4
5
. Since f
0
.0/ D f
0
.L/ D 0
and f
000
.x/ D 24.3x L/,
a
n
D
48L
2
n
3
3
Z
L
0
.3x L/ sin
nx
L
dx D
48L
3
n
4
4
"
.3x L/ cos
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
3
Z
L
0
cos
nx
L
dx
#
D
48L
3
n
4
4
Œ.1/
n
2L C L C
144L
4
n
5
5
sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
D
48L
4
n
4
4
Œ1 C .1/
n
2 ; n 1I
C.x/ D
2L
4
5
48L
4
4
1
X
nD1
1 C .1/
n
2
n
4
cos
nx
L
:
11.3.34. a
0
D
1
L
Z
L
0
.x
4
2Lx
3
C L
2
x
2
/ dx D
1
L
x
5
5
Lx
4
2
C
L
2
x
3
3
ˇ
ˇ
ˇ
ˇ
L
0
D
L
4
30
. Since f
0
.0/ D
f
0
.L/ D 0 and f
000
.x/ D 12.2x L/,
a
n
D
24L
2
n
3
3
Z
L
0
.2x L/ sin
nx
L
dx D
24L
3
n
4
4
"
.2x L/ cos
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
2
Z
L
0
cos
nx
L
dx
#
D
24L
3
n
4
4
Œ.1/
n
L C L C
48L
4
n
5
5
sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
D
24L
4
n
4
4
Œ1 C .1/
n
D
8
<
:
0 if n D 2m 1;
3L
4
m
4
4
if n D 2m;
n 1:
234 Chapter 11
Boun dary Value Problems and Fourier Expansions
C.x/ D
L
4
30
3L
4
4
1
X
nD1
1
n
4
cos
2nx
L
:
11.3.36. Since f .0/ D f .L/ D 0 and f
00
.x/ D 2,
b
n
D
4L
n
2
2
Z
L
0
sin
nx
L
dx D
4L
2
n
3
3
cos
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
D
4L
2
n
3
2
.cos n 1/
D
8
<
:
8L
2
.2m 1/
3
3
; if n D 2m 1;
0; if n D 2mI
S.x/ D
8L
2
3
1
X
nD1
1
.2n 1/
3
sin
.2n 1/x
L
:
11.3.38. Since f .0/ D f .L/ D 0 and f
00
.x/ D 6x,
b
n
D
12L
n
2
2
Z
L
0
x sin
nx
L
dx D
12L
2
n
3
3
"
x cos
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
cos
nx
L
dx
#
D .1/
nC1
12L
3
n
3
3
I
S.x/ D
12L
3
3
1
X
nD1
.1/
n
n
3
sin
nx
L
:
11.3.40. Since f .0/ D f .L/ D f
00
.0/ D f
00
.L/ D 0 and f
.4/
D 360x,
b
n
D
720L
3
n
4
4
Z
L
0
x sin
nx
L
dx D
720L
4
n
5
5
"
x cos
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
cos
nx
L
dx
#
D .1/
nC1
720L
5
n
5
5
C
720L
5
n
6
6
sin
nx
L
ˇ
ˇ
ˇ
ˇ
L
0
D .1/
nC1
720L
5
n
5
5
I
S.x/ D
720L
5
5
1
X
nD1
.1/
n
n
5
sin
nx
L
:
11.3.42. (a) Since f is continuous on Œ0; L and f .L/ D 0, Theorem 11.3.3 implies that
f .x/ D
1
X
nD1
c
n
cos
.2n 1/x
2L
, L x L, with
c
n
D
2
L
Z
L
0
f .x/ cos
.2n 1/ x
2L
dx
D
4
.2n 1/
"
f .x/ sin
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
f
0
.x/ sin
.2n 1/x
2L
dx
#
D
4
.2n 1/
Z
L
0
f
0
.x/ sin
.2n 1/x
2L
dx (since f .L/ D 0)
D
8L
2
.2n 1/
2
2
"
f
0
.x/ cos
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
f
00
.x/ cos
.2n 1/ x
2L
dx
#
D
8L
.2n 1/
2
2
Z
L
0
f
00
.x/ cos
.2n 1/ x
2L
dx ( since f
0
.0/ D 0):
Section 11.3
Fourier Expansions II
235
(b) Continuing the integration by parts yields
c
n
D
16L
2
.2n 1/
3
3
"
f
00
.x/ sin
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
f
000
.x/ sin
.2n 1/ x
2L
dx
#
D
16L
2
.2n 1/
3
3
Z
L
0
f
000
.x/ sin
.2n 1/ x
2L
dx:
11.3.44. Since f
0
.0/ D f .L/ D 0 and f
00
.x/ D 2,
c
n
D
16L
.2n 1/
2
2
Z
L
0
cos
.2n 1/ x
2L
dx
D
32L
2
.2n 1/
3
3
sin
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
D .1/
nC1
32L
2
.2n 1/
3
3
I
C
M
.x/ D
32L
2
3
1
X
nD1
.1/
n
.2n 1/
3
cos
.2n 1/x
2L
:
11.3.46. Since f
0
.0/ D f .L/ D 0 and f
00
.x/ D 6.2x C L/,
c
n
D
48L
.2n 1/
2
2
Z
L
0
.2x C L/ cos
.2n 1/x
2L
dx
D
96L
2
.2n 1/
3
3
"
.2x C L/ sin
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
2
Z
L
0
sin
.2n 1/ x
2L
#
dx
D
96L
2
.2n 1/
3
3
"
.1/
nC1
3L
4L
.2n 1/
cos
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
#
D
96L
3
.2n 1/
3
3
.1/
n
3 C
4
.2n 1/
I
C
M
.x/ D
96L
3
3
1
X
nD1
1
.2n 1/
3
.1/
n
3 C
4
.2n 1/
cos
.2n 1/ x
2L
:
11.3.48. Since f
0
.0/ D f .L/ D f
00
.L/ D 0 and f
000
.x/ D 12.2x L/,
c
n
D
192L
2
.2n 1/
3
3
Z
L
0
.2x L/ sin
.2n 1/ x
2L
dx
D
384L
3
.2n 1/
4
4
"
.2x L/ cos
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
2
Z
L
0
cos
.2n 1/ x
2L
#
dx
D
384L
3
.2n 1/
4
4
"
L
4L
.2n 1/
sin
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
#
D
384L
4
.2n 1/
4
4
1 C
.1/
n
4
.2n 1/
I
C
M
.x/ D
384L
4
4
1
X
nD1
1
.2n 1/
4
1 C
.1/
n
4
.2n 1/
cos
.2n 1/x
2L
:
236 Chapter 11
Boun dary Value Problems and Fourier Expansions
11.3.50. (a) Since f is continuous on Œ0; L and f .0/ D 0, Theorem 11.3.4 implies that
f .x/ D
1
X
nD1
d
n
sin
.2n 1/ x
2L
, L x L, with
d
n
D
2
L
Z
L
0
f .x/ sin
.2n 1/x
2L
dx
D
4
.2n 1/
"
f .x/ cos
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
f
0
.x/ cos
.2n 1/ x
2L
dx
#
D
4
.2n 1/
Z
L
0
f
0
.x/ cos
.2n 1/ x
2L
dx ( since f .0/ D 0)
D
8L
.2n 1/
2
2
"
f
0
.x/ sin
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
f
00
.x/ sin
.2n 1/ x
2L
dx
#
D
8L
.2n 1/
2
2
Z
L
0
f
00
.x/ sin
.2n 1/ x
2L
dx since f
0
.L/ D 0:
(b) Continuing the integration by parts yields
d
n
D
16L
2
.2n 1/
3
3
"
f
00
.x/ cos
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
Z
L
0
f
000
.x/ cos
.2n 1/ x
2L
dx
#
D
16L
2
.2n 1/
3
3
Z
L
0
f
000
.x/ cos
.2n 1/ x
2L
dx:
11.3.52. Since f .0/ D f
0
.L/ D 0, and f
00
.x/ D 6.L 2x/
d
n
D
48L
.2n 1/
2
2
Z
L
0
.L 2x/ sin
.2n 1/ x
2L
dx
D
96L
2
.2n 1/
3
3
"
.L 2x/ cos
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
C 2
Z
L
0
cos
.2n 1/ x
2L
dx
#
D
96L
2
.2n 1/
3
3
"
L C
4L
.2n 1/
sin
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
#
D
96L
3
.2n 1/
3
3
1 C .1/
n
4
.2n 1/
I
S
M
.x/ D
96L
3
3
1
X
nD1
1
.2n 1/
3
1 C .1/
n
4
.2n 1/
sin
.2n 1/ x
2L
:
11.3.54. Since f .0/ D f
0
.L/ D f
00
.0/ D 0 and f
000
.x/ D 6,
d
n
D
96L
2
.2n 1/
3
3
Z
L
0
cos
.2n 1/x
2L
dx
D
192L
3
.2n 1/
4
4
sin
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
D .1/
n
192L
3
.2n 1/
4
4
I
Section 11.3
Fourier Expansions II
237
S
M
.x/ D
192L
3
4
1
X
nD1
.1/
n
.2n 1/
4
sin
.2n 1/x
2L
:
11.3.56. Since f .0/ D f
0
.L/ D f
00
.0/ D 0 and f
000
.x/ D 12.2x L/,
d
n
D
192L
2
.2n 1/
3
3
Z
L
0
.2x L/ cos
.2n 1/ x
2L
dx
D
384L
3
.2n 1/
4
4
"
.2x L/ sin
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L
0
2
Z
L
0
sin
.2n 1/x
2L
dx
#
D
384L
3
.2n 1/
4
4
"
.1/
nC1
L C
4L
.2n 1/
cos
.2n 1/ x
2L
ˇ
ˇ
ˇ
ˇ
L
0
#
D
384L
3
.2n 1/
4
4
.1/
nC1
L
4L
.2n 1/
D
384L
4
.2n 1/
4
4
.1/
n
C
4
.2n 1/
I
S
M
.x/ D
384L
4
4
1
X
nD1
1
.2n 1/
4
.1/
n
C
4
.2n 1/
sin
.2n 1/ x
2L
:
11.3.58. The Fourier sine series of f
4
on Œ0; 2L is
1
X
nD1
B
n
sin
nx
2L
, where
B
n
D
1
L
Z
2L
0
f
4
.x/ sin
nx
2L
dx D
1
L
"
Z
L
0
f .x/ sin
nx
2L
dx C
Z
2L
L
f .2L x/ sin
nx
2L
dx
#
:
Replacing x by 2L x y ields
Z
2L
L
f .2L x/ sin
nx
2L
dx D
Z
L
0
f .x/ sin
n.2L x/
2L
dx. Since
sin
n.2L x/
2L
D .1/
nC1
sin
nx
2L
,
Z
2L
L
f .2L x/ sin
nx
2L
dx D .1/
nC1
Z
L
0
f .x/ sin
nx
2L
dx;
so
B
n
D
1 C .1/
nC1
L
Z
L
0
f .x/ sin
nx
2L
dx D
8
<
:
2
L
Z
L
0
f .x/ sin
.2m 1/ x
2L
dx if n D 2m 1;
0 if n D 2m:
Therefore,the Fourier sine series of f
4
on Œ0; 2L is
1
X
nD1
d
n
sin
.2n 1/x
2L
with
d
n
D
2
L
Z
L
0
f .x/ sin
.2n 1/ x
2L
dx:
238 Chapter 11
Boun dary Value Problems and Fourier Expansions
11.3.60. The Fourier cosine series of f
4
on Œ0; 2L is A
0
C
1
X
nD1
A
n
cos
nx
2L
, where
A
0
D
1
2L
Z
2L
0
f
4
.x/ dx D
1
2L
"
Z
L
0
f .x/ dx C
Z
2L
L
f .2L x/ dx
#
D
1
L
Z
L
0
f .x/ dx
and
A
n
D
1
L
Z
2L
0
f
4
.x/ cos
nx
2L
dx D
1
L
"
Z
L
0
f .x/ cos
nx
2L
dx C
Z
2L
L
f .2L x/ cos
nx
2L
dx
#
:
Replacing x by 2L x yields
Z
2L
L
f .2L x/ cos
nx
2L
dx D
Z
0
L
f .x/ cos
n.2L x/
2L
dx D
Z
L
0
f .x/ cos
n.2L x/
2L
dx:
Since cos
n.2L x/
2L
D cos n cos
nx
2L
D .1/
n
cos
nx
2L
,
A
n
D
1 C.1/
n
L
Z
L
0
f .x/ cos
nx
2L
dx D
8
<
:
0 if n D 2m 1
2
L
Z
L
0
f .x/ cos
mx
L
dx if n D 2m:
Therefore,the Fourier cosine series of f
4
on Œ0; 2L is A
0
C
1
X
nD0
A
2n
cos
nx
L
= a
0
C
1
X
nD0
a
n
cos
nx
L
.
CHAPTER 1 2
Fo urier Solutions of Partial Differential
12.1 THE HEAT EQUATION
12.1.2. X.x/T .t/ satisfies u
t
D a
2
u
xx
if X
00
C X D 0 and ( A) T
0
D a
2
T for the same value
of . The p roduct also satisfies the boundary conditions u.0; t/ D u
x
.L; t / D 0; t > 0, if and only
if X.0/ D X
0
.L/ D 0. Since we are interested in nontrivial solutions, X must be a non trivial solution
of (B) X
00
C X D 0; X.0/ D 0; X
0
.L/ D 0. From Theorem 11.1.4,
n
D .2n 1/
2
2
=4L
2
is an
eigenvalue of (B) with associated eig enfunction X
n
D sin
.2n 1/ x
2L
, n D 1; 2; 3; : : : . Substituting
D .2n 1/
2
2
=4L
2
into (A) yields T
0
D ..2n 1/
2
2
a
2
=4L
2
/T , wh ich has the solution T
n
D
e
.2n1/
2
2
a
2
t=4L
2
.
We have now shown that the functions u
n
.x; t/ D e
.2n1/
2
2
a
2
t=4L
2
sin
.2n 1/x
2L
, n D 1; 2; 3; : : :
satisfy u
t
D a
2
u
xx
and the boundary conditions u.0; t/ D u
x
.L; t / D 0; t > 0. Any finite sum
m
X
nD1
d
n
e
.2n1/
2
2
a
2
t=4L
2
sin
.2n 1/ x
2L
also has these properties. Therefore,it is plausible to expect
that that this is also true of the infinite series (C) u.x; t/ D
1
X
nD1
d
n
e
.2n1/
2
2
a
2
t=4L
2
sin
.2n 1/x
2L
under su itable conditions on the coefficients fd
n
g. Since u.x; 0/ D
1
X
nD1
d
n
sin
.2n 1/ x
2L
, if fd
n
g are
the mixed Fourier sine coefficients of f on Œ0; L, then u.x; 0/ D f .x/ at all points x in Œ0; L where the
mixed Fo urier sine series converges to f .x/. In this case (C) is a formal solution of the initial-boundary
value prob lem of Definition 12.1.3.
12.1.8. Since f .0/ D f .1/ D 0 and f
00
.x/ D 2, Theorem 11.3.5(b) implies that
˛
n
D
4
n
2
2
Z
1
0
sin nx dx D
4
n
3
3
cos nx
ˇ
ˇ
ˇ
ˇ
1
0
D
4
n
3
2
.cos n 1/
D
8
<
:
8
.2m 1/
3
3
; if n D 2m 1;
0; if n D 2mI
S.x/ D
8
3
1
X
nD1
1
.2n 1/
3
sin
.2n 1/ x
L
. From Definition 12.1.1,
u.x; t/ D
8
3
1
X
nD1
1
.2n 1/
3
e
.2n1/
2
2
t
sin.2n 1/x:
239
240 Chapter 12
Fourier Solut ions of Partial Di fferential
12.1.10.
˛
1
D
2
Z
0
x sin
2
x dx D
1
Z
0
x.1 cos 2x/ dx D
x
2
2
ˇ
ˇ
ˇ
ˇ
0
1
Z
0
x cos 2x dx
D
2
1
2
x sin 2x
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos 2x dx
D
2
C
sin 2x
4
ˇ
ˇ
ˇ
ˇ
0
D
2
I
if n 2, then
˛
n
D
2
Z
0
x sin x sin nx dx D
1
Z
0
xŒcos.n 1/x cos.n C 1/x dx
D
1
x
sin.n 1/x
n 1
sin.n C 1/x
n C 1
ˇ
ˇ
ˇ
ˇ
0
Z
0
sin.n 1/x
n 1
sin.n C 1/x
n C 1
dx
D
1
cos.n 1/x
.n 1/
2
cos.n C 1/x
.n C 1/
2
ˇ
ˇ
ˇ
ˇ
0
D
1
1
.n 1/
2
1
.n C 1/
2
.1/
nC1
1
D
4n
.n
2
1/
2
.1/
nC1
1
D
8
<
:
0 i f n D 2m 1;
16m
.4m
2
1/
if n D 2mI
S.x/ D
2
sin x
16
1
X
nD1
n
.4n
2
1/
2
sin 2nx. From Definiti on 12.1.1,
u.x; t/ D
2
e
3t
sin x
16
1
X
nD1
n
.4n
2
1/
2
e
12n
2
t
sin 2nx:
12.1.12. Since f .0/ D f .L/ D 0 and f
00
.x/ D 6x, Theorem 11.3.5(b) implies that
˛
n
D
36
n
2
2
Z
3
0
x sin
nx
3
dx D
108
n
3
3
"
x cos
nx
3
ˇ
ˇ
ˇ
ˇ
3
0
Z
3
0
cos
nx
3
dx
#
D .1/
nC1
108
n
3
3
C
108
n
4
4
sin
nx
3
ˇ
ˇ
ˇ
ˇ
3
0
D .1/
nC1
324
n
3
3
I
S.x/ D
324
3
1
X
nD1
.1/
n
n
3
sin
nx
3
. From Definition 1 2.1.1, u.x; t/ D
324
3
1
X
nD1
.1/
n
n
3
e
4n
2
2
t=9
sin
nx
3
.
12.1.14. Since f .0/ D f .1/ D f
00
.0/ D f
00
.L/ D 0 and f
.4/
D 360x, Theorem 11.3.5(b) and
Exercise 35(b) of Section 11.3 imply that
˛
n
D
720
n
4
4
Z
1
0
x sin nx dx D
720
n
5
5
"
x cos nx
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
cos n x dx
#
D .1/
nC1
720
n
5
5
C
720
n
6
6
sin
nx
L
ˇ
ˇ
ˇ
ˇ
1
0
D .1/
nC1
720
n
5
5
I
S.x/ D
720
5
1
X
nD1
.1/
n
n
5
sin n x. From Definition 12.1.1, u.x; t/ D
720
5
1
X
nD1
.1/
n
n
5
e
7n
2
2
t
sin nx.
Section 12.1
The Heat Equation
241
12.1.16. Since f .0/ D f .1/ D f
00
.0/ D f
00
.L/ D 0 and f
.4/
D 120.3x 1/, Theorem 11.3.5(b) and
Exercise 35(b) of Section 11.3 imply that
˛
n
D
240
n
4
4
Z
1
0
.3x 1/ sin nx dx D
240
n
5
5
"
.3x 1/ cos nx
ˇ
ˇ
ˇ
ˇ
1
0
3
Z
1
0
cos nx dx
#
D
240
n
5
5
Œ.1/
n
2 C 1 C
720
n
6
6
sin nx
ˇ
ˇ
ˇ
ˇ
1
0
D
240
n
5
5
Œ1 C .1/
n
2 I
S.x/ D
240
5
1
X
nD1
1 C .1/
n
2
n
5
sin nx. From Definition 12.1.1,
u.x; t/ D
240
5
1
X
nD1
1 C .1/
n
2
n
5
e
2n
2
2
t
sin n x:
12.1.18. ˛
0
D
1
2
Z
2
0
.x
2
4x/ dx D
1
L
x
3
3
2x
2
ˇ
ˇ
ˇ
ˇ
2
0
D
8
3
; if n 1,
˛
n
D
Z
2
0
.x
2
4x/ cos
nx
2
dx D
2
n
"
.x
2
4x/ sin
nx
2
ˇ
ˇ
ˇ
ˇ
2
0
2
Z
2
0
.x 2/ sin
nx
2
dx
#
D
8
n
2
2
"
.x 2/ cos
nx
2
ˇ
ˇ
ˇ
ˇ
2
0
Z
2
0
cos
nx
2
dx
#
D
16
n
2
2
32
n
3
3
sin
nx
2
ˇ
ˇ
ˇ
ˇ
2
0
D
16
n
2
2
I
C.x/ D
8
3
C
16
2
1
X
nD1
1
n
2
cos
nx
2
. From Definition 12.1.3, u.x; t/ D
8
3
C
16
2
1
X
nD1
1
n
2
e
n
2
2
t
cos
nx
2
.
12.1.20. From Example 11.3.5, C.x/ D 4
384
4
1
X
nD1
1
.2n 1/
4
cos
.2n 1/ x
2
. From Definition 12.1.3,
u.x; t/ D 4
384
4
1
X
nD1
1
.2n 1/
4
e
3.2n1/
2
2
t=4
cos
.2n 1/x
2
.
12.1.22. ˛
0
D
1
L
Z
1
0
.3x
4
4Lx
3
/ dx D
1
L
3x
5
5
x
4
ˇ
ˇ
ˇ
ˇ
1
0
D
2
5
. Since f
0
.0/ D f
0
.1/ D 0 and
f
000
.x/ D 24.3x 1/, Theorem 11.3.5(a) implies that
˛
n
D
48
n
3
3
Z
1
0
.3x 1/ sin nx dx D
48
n
4
4
"
.3x 1/ cos nx
ˇ
ˇ
ˇ
ˇ
1
0
3
Z
1
0
cos nx dx
#
D
48
n
4
4
Œ.1/
n
2 C 1 C
144
n
5
5
sin nx
ˇ
ˇ
ˇ
ˇ
1
0
D
48
n
4
4
Œ1 C .1/
n
2 ; n 1I
C.x/ D
2
5
48
4
1
X
nD1
1 C.1/
n
2
n
4
cos n x. From Definition 12.1.3,
u.x; t/ D
2
5
48
4
1
X
nD1
1 C .1/
n
2
n
4
e
3n
2
2
t
cos nx:
242 Chapter 12
Fourier Solut ions of Partial Di fferential
12.1.24. ˛
0
D
1
Z
0
.x
4
2x
3
C
2
x
2
/ dx D
1
x
5
5
x
4
2
C
2
x
3
3
ˇ
ˇ
ˇ
ˇ
0
D
4
30
. Since f
0
.0/ D
f
0
./ D 0 and f
000
.x/ D 12.2x /, Theorem 11.3.5(a) implies that
˛
n
D
24
n
3
Z
0
.2x / sin nx dx D
24
n
4
.2x / cos nx
ˇ
ˇ
ˇ
ˇ
0
2
Z
0
cos nx dx
D
24
n
4
Œ.1/
n
C C
48
n
5
sin nx
ˇ
ˇ
ˇ
ˇ
0
D
24
n
4
Œ1 C .1/
n
D
(
0 if n D 2m 1;
3
m
4
if n D 2m;
n 1I
C.x/ D
4
30
3
1
X
nD1
1
n
4
cos 2nx. From Definition 12.1.3, u.x; t/ D
4
30
3
1
X
nD1
1
n
4
e
4n
2
t
cos 2nx.
12.1.26.
˛
n
D
2
Z
0
.x x
2
/ sin
.2n 1/x
2
dx
D
4
.2n 1/
.x x
2
/ cos
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
0
Z
0
. 2x/ cos
.2n 1/x
2
dx
D
8
.2n 1/
2
. 2x/ sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
0
C 2
Z
0
sin
.2n 1/x
2
dx
D .1/
n
8
.2n 1/
2
32
.2n 1/
3
cos
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
0
D .1/
n
8
.2n 1/
2
C
32
.2n 1/
3
I
S
M
.x/ D 8
1
X
nD1
1
.2n 1/
2
.1/
n
C
4
.2n 1/
sin
.2n 1/x
2
. From Definition 12.1.4,
u.x; t/ D 8
1
X
nD1
1
.2n 1/
2
.1/
n
C
4
.2n 1/
e
3.2n1/
2
t=4
sin
.2n 1/x
2
:
12.1.28. Since f .0/ D f
0
.1/ D 0, and f
00
.x/ D 6.1 2x/, Theorem 11.3.5(d) implies that
˛
n
D
48
.2n 1/
2
2
Z
1
0
.1 2x/ sin
.2n 1/ x
2
dx
D
96
.2n 1/
3
3
"
.1 2x/ cos
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
C 2
Z
1
0
cos
.2n 1/ x
2
dx
#
D
96
.2n 1/
3
3
"
1 C
4
.2n 1/
sin
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
96
.2n 1/
3
3
1 C.1/
n
4
.2n 1/
I
Section 12.1
The Heat Equation
243
S
M
.x/ D
96
3
1
X
nD1
1
.2n 1/
3
1 C .1/
n
4
.2n 1/
sin
.2n 1/ x
2
. From Definition 12.1.4,
u.x; t/ D
96
3
1
X
nD1
1
.2n 1/
3
1 C .1/
n
4
.2n 1/
e
.2n1/
2
2
t
sin
.2n 1/x
2
:
12.1.30. Since f .0/ D f
0
.L/ D f
00
.0/ D 0 and f
000
.x/ D 6, Theorem 11.3.5(d) and Exercise 11.3.50(b)
imply that
˛
n
D
96
.2n 1/
3
3
Z
1
0
cos
.2n 1/ x
2
dx
D
192
.2n 1/
4
4
sin
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
D .1/
n
192
.2n 1/
4
4
I
S
M
.x/ D
192
4
1
X
nD1
.1/
n
.2n 1/
4
sin
.2n 1/ x
2
. From Definition 12.1.4,
u.x; t/ D
192
4
1
X
nD1
.1/
n
.2n 1/
4
e
.2n1/
2
2
t
sin
.2n 1/x
2
:
12.1.32. Since f .0/ D f
0
.1/ D f
00
.0/ D 0 and f
000
.x/ D 12.2x 1/, Theorem 11.3.5(d) and Exer-
cise 11.3.50(b) imply that
˛
n
D
192
.2n 1/
3
3
Z
1
0
.2x 1/ cos
.2n 1/x
2
dx
D
384
.2n 1/
4
4
"
.2x 1/ sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
2
Z
1
0
sin
.2n 1/ x
2
dx
#
D
384
.2n 1/
4
4
"
.1/
nC1
1 C
4
.2n 1/
cos
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
384
.2n 1/
4
4
.1/
nC1
1
4
.2n 1/
D
384
.2n 1/
4
4
.1/
n
C
4
.2n 1/
I
S
M
.x/ D
384
4
1
X
nD1
1
.2n 1/
4
.1/
n
C
4
.2n 1/
sin
.2n 1/x
2
. From Definition 12.1.4,
u.x; t/ D
384
4
1
X
nD1
1
.2n 1/
4
.1/
n
C
4
.2n 1/
e
.2n1/
2
2
t
sin
.2n 1/ x
2
:
12.1.36. From Example 11.3.3, C
M
.x/ D
8
2
1
X
nD1
1
.2n 1/
2
cos
.2n 1/ x
2
. From Definition 12.1.5,
u.x; t/ D
8
2
1
X
nD1
1
.2n 1/
2
e
3.2n1/
2
2
t=4
cos
.2n 1/ x
2
:
244 Chapter 12
Fourier Solut ions of Partial Di fferential
12.1.38. Since f
0
.0/ D f ./ D 0 and f
00
.x/ D 2, Theorem 11.3.5(c) implies that
˛
n
D
16
.2n 1/
2
Z
0
cos
.2n 1/x
2
dx D
32
.2n 1/
3
sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
0
D .1/
nC1
32
.2n 1/
3
I
C
M
.x/ D
32
1
X
nD1
.1/
n
.2n 1/
3
cos
.2n 1/x
2
. From Defini tion 12.1.5,
u.x; t/ D
32
1
X
nD1
.1/
n
.2n 1/
3
e
7.2n1/
2
t=4
cos
.2n 1/x
2
:
12.1.40. Since f
0
.0/ D f .1/ D 0 and f
00
.x/ D 6.2x C1/, Theorem 11.3.5(c) implies that
˛
n
D
48L
.2n 1/
2
2
Z
1
0
.2x C 1/ cos
.2n 1/ x
2
dx
D
96
.2n 1/
3
3
"
.2x C 1/ sin
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
2
Z
1
0
sin
.2n 1/ x
2
#
dx
D
96
.2n 1/
3
3
"
.1/
nC1
3
4
.2n 1/
cos
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
96
.2n 1/
3
3
.1/
n
3 C
4
.2n 1/
I
C
M
.x/ D
96
3
1
X
nD1
1
.2n 1/
3
.1/
n
3 C
4
.2n 1/
cos
.2n 1/ x
2
. From Definition 12.1.5,
u.x; t/ D
96
3
1
X
nD1
1
.2n 1/
3
.1/
n
3 C
4
.2n 1/
e
.2n1/
2
2
t=4
cos
.2n 1/ x
2
:
12.1.42. Theorem 11.3.5(c) and Exercise 11.3.42(b) imply t hat Since f
0
.0/ D f .1/ D f
00
.1/ D 0 and
f
000
.x/ D 12.2x 1/,
˛
n
D
192
.2n 1/
3
3
Z
1
0
.2x 1/ si n
.2n 1/ x
2
dx
D
384
.2n 1/
4
4
"
.2x 1/ cos
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
2
Z
1
0
cos
.2n 1/x
2
#
dx
D
384
.2n 1/
4
4
"
1
4
.2n 1/
sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
384
.2n 1/
4
4
1 C
.1/
n
4
.2n 1/
I
C
M
.x/ D
384
4
1
X
nD1
1
.2n 1/
4
1 C
.1/
n
4
.2n 1/
cos
.2n 1/x
2
. From Definition 12.1.5,
u.x; t/ D
384
4
1
X
nD1
1
.2n 1/
4
1 C
.1/
n
4
.2n 1/
e
.2n1/
2
2
t=4
cos
.2n 1/ x
2
:
Section 12.1
The Heat Equation
245
12.1.44. ˛
n
D
2
L
Z
L=2
0
sin
nx
L
dx D
2
n
cos
nx
L
ˇ
ˇ
ˇ
ˇ
L=2
0
D
2
n
h
1 cos
n
2
i
;
S.x/ D
2
1
X
nD1
1
n
h
1 cos
n
2
i
sin
nx
L
. From Definition 12.1.1,
u.x; t/ D
2
1
X
nD1
1
n
h
1 cos
n
2
i
e
n
2
2
t
2
=L
2
sin
nx
L
:
12.1.46.
˛
n
D
2
L
Z
L=2
0
sin
.2n 1/ x
2L
dx D
4
.2n 1/
cos
.2n 1/x
2L
ˇ
ˇ
ˇ
ˇ
L=2
0
D
4
.2n 1/
1 cos
.2n 1//
4
I
S
M
.x/ D
4
1
X
nD1
1
2n 1
1 cos
.2n 1//
4
sin
.2n 1/ x
2L
. From Defini tion 12.1.4,
u.x; t/ D
4
1
X
nD1
1
2n 1
1 cos
.2n 1//
4
e
.2n1/
2
2
a
2
t=4L
2
sin
.2n 1/x
2L
:
12.1.48. Let u.x; t/ D v.x; t/ C q.x/; t hen u
t
D v
t
and u
xx
D v
xx
C q
00
, so
v
t
D 9v
xx
C 9q
00
54x; 0 < x < 4; t > 0;
v.0; t/ D 1 q.0/; v.4; t/ D 61 q.4/; t > 0;
v.x; 0/ D 2 x C x
3
q.x/; 0 x 4:
.A/
We want q
00
.x/ D 6x; q.0/ D 1; q.4/ D 61; q.x/ D x
3
C a
1
C a
2
x; q.0/ D 1 ) a
1
D 1;
q.x/ D x
3
C 1 C a
2
x; q.4/ D 61 ) a
2
D 1; q.x/ D x
3
C 1 x. Now (A) redu ces to
v
t
D 9v
xx
; 0 < x < 4; t > 0;
v.0; t/ D 0; v.4; t/ D 0; t > 0;
v.x; 0/ D 1; 0 x 4;
which we so lve by separation of variables.
˛
n
D
1
2
Z
L
0
sin
nx
4
dx D
2
n
cos
nx
4
ˇ
ˇ
ˇ
ˇ
4
0
D
2
n
Œ1 .1/
n
D
8
<
:
4
.2m 1/
if n D 2m 1;
0 if n D 2mI
S.x/ D
4
1
X
nD1
1
.2n 1/
sin
.2n 1/ x
4
. From Defini tion 12.1.1,
v.x; t/ D
4
1
X
nD1
1
.2n 1/
e
9
2
n
2
t=16
sin
.2n 1/x
4
:
246 Chapter 12
Fourier Solut ions of Partial Di fferential
Therefore,
u.x; t/ D 1 x C x
3
C
4
1
X
nD1
e
9
2
n
2
t=16
.2n 1/
sin
.2n 1/x
4
:
12.1.50. Let u.x; t/ D v.x; t/ C q.x/; t hen u
t
D v
t
and u
xx
D v
xx
C q
00
, so
v
t
D 3u
xx
C3q
00
18x; 0 < x < 1; t > 0;
v
x
.0; t/ D 1 q
0
.0/; v.1; t/ D 1 q.1/; t > 0;
v.x; 0/ D x
3
2x q.x/; 0 x 1:
.A/
We want q
00
.x/ D 6x; q
0
.0/ D 1; q.1/ D 1; q
0
.x/ D 3x
2
C a
2
; q
0
.0/ D 1 ) a
2
D 1;
q
0
.x/ D 3x
2
1; q.x/ D x
3
x Ca
1
x; q.1/ D 1 ) a
1
D 1; q.x/ D x
3
x 1. Now (A) reduces
to
v
t
D 3u
xx
; 0 < x < 1; t > 0;
v
x
.0; t/ D 0; v.1; t/ D 0; t > 0;
v.x; 0/ D 1 x; 0 x 1:
From Example 11.3.3, C
M
.x/ D
8
2
1
X
nD1
1
.2n 1/
2
cos
.2n 1/ x
2
. From Defini tion 12.1.5, v.x; t/ D
8
2
1
X
nD1
1
.2n 1/
2
e
3.2n1/
2
2
t=4
cos
.2n 1/ x
2
. Therefore,
u.x; t/ D 1 x C x
3
C
8
2
1
X
nD1
1
.2n 1/
2
e
3.2n1/
2
2
t=4
cos
.2n 1/x
2
:
12.1.52. Let u.x; t/ D v.x; t/ C q.x/; t hen u
t
D v
t
and u
xx
D v
xx
C q
00
, so
v
t
D v
xx
C q
00
C
2
sin x; 0 < x < 1; t > 0;
v.0; t/ D q.0/; v
x
.1; t/ D q
0
.1/; t > 0;
v.x; 0/ D 2 sin x q.x/; 0 x 1:
.A/
We want q
00
.x/ D
2
sin x; q.0/ D 0; q
0
.1/ D ; q
0
.x/ D cos xCa
2
; q
0
.1/ D ) a
2
D 0;
q
0
.x/ D cos x; q.x/ D sin x C a
1
; q.0/ D 0 ) a
1
D 0; q.x/ D sin x. N ow (A) reduces to
v
t
D v
xx
; 0 < x < 1; t > 0;
v.0; t/ D 0; v
x
.1; t/ D 0; t > 0;
v.x; 0/ D sin x; 0 x 1:
˛
n
D 2
Z
1
0
sin x sin
.2n 1/x
2
dx D
Z
1
0
cos.2n 3/x
2
cos.2n C 1/ x
2
dx
D
2
sin.2n 3/x=2
.2n 3/
sin.2n C 1/x=2
.2n C 1/
ˇ
ˇ
ˇ
ˇ
1
0
D .1/
n
2
1
2n 3
1
2n C 1
D .1/
n
8
1
.2n C 1/.2n 3/
I
S
M
.x/ D
8
1
X
nD1
.1/
n
.2n C 1/.2n 3/
sin
.2n 1/ x
2
. From Defini tion 12.1.4,
v.x; t/ D
8
1
X
nD1
.1/
n
.2n C 1/.2n 3/
e
.2n1/
2
2
t=4
sin
.2n 1/ x
2
:
Section 12.2
The Wave Equation
247
Therefore, u.x; t/ D si n x C
8
1
X
nD1
.1/
n
.2n C 1/.2n 3/
e
.2n1/
2
2
t=4
sin
.2n 1/ x
2
.
12.1.54. (a) Since f is piecewise smooth of Œ0; L, there is a con stant K such that jf .x/j K, 0 x
L. Therefore, j˛
n
j D
2
L
ˇ
ˇ
ˇ
ˇ
ˇ
Z
L
0
f .x/ sin
nx
L
dx
ˇ
ˇ
ˇ
ˇ
ˇ
2
L
Z
L
0
jf .x/jdx D 2K. Hence, j˛
n
e
n
2
2
a
2
t=L
j
2Ke
n
2
2
a
2
t=L
, so u.x; t/ converges for all x if t > 0, by the comparison test.
(b) Let t b e a fixed positive number. Apply Theorem 12.1.2 with ´ D x and w
n
.x/ D ˛
n
e
n
2
2
t=L
2
sin
nx
L
.
Then w
0
n
.x/ D
L
n
e
n
2
2
t=L
2
cos
nx
L
, so jw
0
n
.x/j
2K
L
ne
n
2
2
t=L
2
, 1 < x < 1. Since
1
X
nD1
ne
n
2
2
a
2
t=L
2
converges if t > 0, Theorem 12 .1.1 (with ´
1
D x
1
and ´
2
D x
2
arbitrary) implies
the concclusion.
(c) Since
1
X
nD1
n
2
e
n
2
2
a
2
t=L
2
also converges if t > 0, an argument like that in (b) w ith w
n
.x/ D
n
e
n
2
2
t=L
2
cos
nx
L
yields the conclusion.
(d) Let x be arbitrar y, but fixed. Apply Theorem 12.1.2 with ´ D t and
w
n
.t/ D ˛
n
e
n
2
2
a
2
t=L
2
sin
nx
L
. Then w
0
n
.t/ D
2
a
2
L
2
n
2
˛
n
e
n
2
2
a
2
t=L
2
sin
nx
L
, so jw
0
n
.t/j
2K
2
a
2
L
n
2
e
n
2
2
a
2
t
0
=L
2
if t > t
0
. Since
1
X
nD1
n
2
e
n
2
2
a
2
t
0
=L
2
converges, Theorem 12.1.1 (with ´
1
D
t
0
> 0 and ´
2
D t
1
arbitrary impli es th e conclusion for t t
0
. However, since t
0
is an arbitrary positive
number, this holds for t > 0.
12.2 THE WAVE EQUATION
12.2.1. ˇ
n
D 2
h
R
1=2
0
x sin nx C
R
1
1=2
.1 x/ sin n x dx
i
;
Z
1=2
0
x sin nx dx D
1
n
"
x cos nx
ˇ
ˇ
ˇ
ˇ
1=2
0
Z
1=2
0
cos nx dx
#
D
1
2n
cos
n
2
C
1
n
2
2
sin nx
ˇ
ˇ
ˇ
ˇ
1=2
0
D
1
2n
cos
n
2
C
1
n
2
2
sin
n
2
I
Z
1=2
0
.1 x/ sin nx dx D
1
n
"
.1 x/ cos n x
ˇ
ˇ
ˇ
ˇ
1
1=2
C
Z
1=2
0
cos nx dx
#
D
1
2n
cos
n
2
1
n
2
2
sin nx
ˇ
ˇ
ˇ
ˇ
1
1=2
D
1
2n
cos
n
2
C
1
n
2
2
sin
n
2
I
b
n
D
4
n
2
2
sin
n
2
D
8
<
:
.1/
mC1
4
.2m 1/
2
2
if n D 2m 1
0 if n D 2mI
248 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
S
g
.x/ D
4
2
1
X
nD1
.1/
nC1
.2n 1/
2
sin.2n 1/x. Fr om Definition 12.1.1,
u.x; t/ D
4
3
3
1
X
nD1
.1/
nC1
.2n 1/
3
sin 3.2n 1/t sin.2n 1/x:
12.2.2. Since f .0/ D f .1/ D 0 and f
00
.x/ D 2, Theorem 11.3.5(b) implies that
˛
n
D
4
n
2
2
Z
1
0
sin nx dx D
4
n
3
3
cos nx
ˇ
ˇ
ˇ
ˇ
1
0
D
4
n
3
2
.cos n 1/
D
8
<
:
8
.2m 1/
3
3
; if n D 2m 1;
0; if n D 2mI
S
f
.x/ D
8
3
1
X
nD1
1
.2n 1/
3
sin.2n 1/x. Fr om Definition 12.1.1,
u.x; t/ D
8
3
1
X
nD1
1
.2n 1/
3
cos 3.2n 1/t sin.2n 1/x:
12.2.4. Since g.0/ D g.1/ D 0 and g
00
.x/ D 2, Theorem 11.3.5(b) implies that
ˇ
n
D
4
n
2
2
Z
1
0
sin nx dx D
4
n
3
3
cos n x
ˇ
ˇ
ˇ
ˇ
1
0
D
4
n
3
2
.cos n 1/
D
8
<
:
8
.2m 1/
3
3
; if n D 2m 1;
0; if n D 2mI
S
g
.x/ D
8
3
1
X
nD1
1
.2n 1/
3
sin.2n 1/x. Fr om Definition 12.1.1,
u.x; t/ D
8
3
4
1
X
nD1
1
.2n 1/
4
sin 3.2n 1/t sin.2n 1/x:
12.2.6. From Example 11.2.6, S
f
.x/ D
324
3
1
X
nD1
.1/
n
n
3
sin
nx
3
. From Definition 12.1.1,
u.x; t/ D
324
3
1
X
nD1
.1/
n
n
3
cos
8 nt
3
sin
nx
3
:
12.2.8. From Example 11.2.6 S
g
.x/ D
324
3
1
X
nD1
.1/
n
n
3
sin
nx
3
. From Definition 12.1.1,
u.x; t/ D
81
2
4
1
X
nD1
.1/
n
n
4
sin
8 nt
3
sin
nx
3
:
Section 12.2
The Wave Equation
249
12.2.10.
˛
1
D
2
Z
0
x sin
2
x dx D
1
Z
0
x.1 cos 2x/ dx D
x
2
2
ˇ
ˇ
ˇ
ˇ
0
1
Z
0
x cos 2x dx
D
2
1
2
x sin 2x
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos 2x dx
D
2
C
sin 2x
4
ˇ
ˇ
ˇ
ˇ
0
D
2
I
if n 2, then
˛
n
D
2
Z
0
x sin x sin nx dx D
1
Z
0
xŒcos.n 1/x cos.n C 1/x dx
D
1
x
sin.n 1/x
n 1
sin.n C 1/x
n C 1
ˇ
ˇ
ˇ
ˇ
0
Z
0
sin.n 1/x
n 1
sin.n C 1/x
n C 1
dx
D
1
cos.n 1/x
.n 1/
2
cos.n C 1/x
.n C 1/
2
ˇ
ˇ
ˇ
ˇ
0
D
1
1
.n 1/
2
1
.n C 1/
2
.1/
nC1
1
D
4n
.n
2
1/
2
.1/
nC1
1
D
8
<
:
0 i f n D 2m 1;
16m
.4m
2
1/
if n D 2mI
S
f
.x/ D
2
sin x
16
1
X
nD1
n
.4n
2
1/
2
sin 2nx. From Definition 12.1.1,
u.x; t/ D
2
cos
p
5 t sin x
16
1
X
nD1
n
.4n
2
1/
2
cos 2n
p
5 t sin 2nx:
12.2.12.
ˇ
1
D
2
Z
0
x sin
2
x dx D
1
Z
0
x.1 cos 2x/ dx D
x
2
2
ˇ
ˇ
ˇ
ˇ
0
1
Z
0
x cos 2x dx
D
2
1
2
x sin 2x
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos 2x dx
D
2
C
sin 2x
4
ˇ
ˇ
ˇ
ˇ
0
D
2
I
if n 2 then
ˇ
n
D
2
Z
0
x sin x sin nx dx D
1
Z
0
xŒcos.n 1/x cos.n C 1/x dx
D
1
x
sin.n 1/x
n 1
sin.n C 1/x
n C 1
ˇ
ˇ
ˇ
ˇ
0
Z
0
sin.n 1/x
n 1
sin.n C 1/x
n C 1
dx
D
1
cos.n 1/x
.n 1/
2
cos.n C 1/x
.n C 1/
2
ˇ
ˇ
ˇ
ˇ
0
D
1
1
.n 1/
2
1
.n C 1/
2
.1/
nC1
1
D
4n
.n
2
1/
2
.1/
nC1
1
D
8
<
:
0 if n D 2m 1;
16m
.4m
2
1/
if n D 2mI
S
g
.x/ D
2
sin x
16
1
X
nD1
n
.4n
2
1/
2
sin 2nx. From Definition 12 .1.1,
u.x; t/ D
2
p
5
sin
p
5 t sin x
8
p
5
1
X
nD1
1
.4n
2
1/
2
sin 2n
p
5 t sin 2nx:
250 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
12.2.14. Since f .0/ D f .1/ D f
00
.0/ D f
00
.L/ D 0 and f
.4/
D 360x, Theorem 11.3.5(b) and
Exercise 35(b) of Section 11.3 imply that
˛
n
D
720
n
4
4
Z
1
0
x sin nx dx D
720
n
5
5
"
x cos nx
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
cos n x dx
#
D .1/
nC1
720
n
5
5
C
720
n
6
6
sin
nx
L
ˇ
ˇ
ˇ
ˇ
1
0
D .1/
nC1
720
n
5
5
I
S
f
.x/ D
720
5
1
X
nD1
.1/
n
n
5
sin n x. From Definition 12.1.1, u.x; t/ D
720
5
1
X
nD1
.1/
n
n
5
cos 3nt sin n x.
12.2.16. ( a) t must be in some interval of the form ŒmL=a; .m C 1/L=a. If
mL
a
t
m C
1
2
L
a
,
then (i) holds with 0 L=2a. If
m C
1
2
L
a
t
.m C 1/L
a
, then (ii) holds with 0 L=2a.
(b) Suppose that (i) holds. Since
cos
.2n 1/ a
L
C
mL
a
D cos
.2n 1/ a
L
cos.2n 1/m D .1/
m
cos
.2n 1/ a
L
;
(A) implies that u.x; t/ D .1/
m
u.x; /.
Suppose that ( ii) holds. Since
cos
.2n 1/ a
L
C
.m C 1/L
a
D cos
.2n 1/ a
L
cos.2n 1/.m C 1/
D .1/
mC1
cos
.2n 1/ a
L
;
(B) i mplies that that u.x; t/ D .1/
mC1
u.x; /.
12.2.18. Since f
0
.0/ D f .2/ D 0 and f
00
.x/ D 2, Theorem 11.3.5(c) implies that
˛
n
D
32
.2n 1/
2
2
Z
2
0
cos
.2n 1/ x
4
dx
D
128
.2n 1/
3
3
sin
.2n 1/ x
4
ˇ
ˇ
ˇ
ˇ
4
0
D .1/
nC1
128
.2n 1/
3
3
I
C
Mf
.x/ D
128
3
1
X
nD1
.1/
n
.2n 1/
3
cos
.2n 1/ x
4
. From Exercise 12.2.17,
u.x; t/ D
128
3
1
X
nD1
.1/
n
.2n 1/
3
cos
3.2n 1/t
4
cos
.2n 1/x
4
:
12.2.20. Since g
0
.0/ D g.2/ D 0 and g
00
.x/ D 2, Theorem 11.3.5(c) implies that
ˇ
n
D
32
.2n 1/
2
2
Z
2
0
cos
.2n 1/x
4
dx
D
128
.2n 1/
3
3
sin
.2n 1/ x
4
ˇ
ˇ
ˇ
ˇ
4
0
D .1/
nC1
128
.2n 1/
3
3
I
Section 12.2
The Wave Equation
251
C
Mf
.x/ D
128
3
1
X
nD1
.1/
n
.2n 1/
3
cos
.2n 1/ x
4
. From Exercise 12.2.17,
u.x; t/ D
512
3
4
1
X
nD1
.1/
n
.2n 1/
4
sin
3.2n 1/t
4
cos
.2n 1/x
4
:
12.2.22. Since f
0
.0/ D f .1/ D 0 and f
00
.x/ D 6.2x C1/, Theorem 11.3.5(c) implies that
˛
n
D
48L
.2n 1/
2
2
Z
1
0
.2x C 1/ cos
.2n 1/ x
2
dx
D
96
.2n 1/
3
3
"
.2x C 1/ sin
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
2
Z
1
0
sin
.2n 1/ x
2
#
dx
D
96
.2n 1/
3
3
"
.1/
nC1
3
4
.2n 1/
cos
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
96
.2n 1/
3
3
.1/
n
3 C
4
.2n 1/
I
C
Mf
.x/ D
96
3
1
X
nD1
1
.2n 1/
3
.1/
n
3 C
4
.2n 1/
cos
.2n 1/x
2
:
From Exercise 12.2.17,
u.x; t/ D
96
3
1
X
nD1
1
.2n 1/
3
.1/
n
3 C
4
.2n 1/
cos
.2n 1/
p
5 t
2
cos
.2n 1/ x
2
:
12.2.24. Since g
0
.0/ D g.1/ D 0 and g
00
.x/ D 6.2x C 1/, Theorem 11.3.5(c) implies that
ˇ
n
D
48L
.2n 1/
2
2
Z
1
0
.2x C 1/ cos
.2n 1/ x
2
dx
D
96
.2n 1/
3
3
"
.2x C 1/ sin
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
2
Z
1
0
sin
.2n 1/x
2
#
dx
D
96
.2n 1/
3
3
"
.1/
nC1
3
4
.2n 1/
cos
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
96
.2n 1/
3
3
.1/
n
3 C
4
.2n 1/
I
C
Mg
.x/ D
96
3
1
X
nD1
1
.2n 1/
3
.1/
n
3 C
4
.2n 1/
cos
.2n 1/x
2
. From Exercise 12.2.17,
u.x; t/ D
192
4
p
5
1
X
nD1
1
.2n 1/
4
.1/
n
3 C
4
.2n 1/
sin
.2n 1/
p
5 t
2
cos
.2n 1/ x
2
:
252 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
12.2.26. Since f
0
.0/ D f .1/ D f
00
.1/ D 0 and f
000
.x/ D 24.x 1/, Theorem 11.3.5(c) and Exer-
cise 42(b) of Section 11.3 i mply that
˛
n
D
384
.2n 1/
3
3
Z
1
0
.x 1/ sin
.2n 1/x
2
dx
D
768
.2n 1/
4
4
"
.x 1/ cos
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
cos
.2n 1/ x
2
#
dx
D
768
.2n 1/
4
4
"
1
2
.2n 1/
sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
768
.2n 1/
4
4
1 C
.1/
n
2
.2n 1/
I
C
Mf
.x/ D
384
4
1
X
nD1
1
.2n 1/
4
1 C
.1/
n
4
.2n 1/
cos
.2n 1/ x
2
. From Exercise 12.2.17,
u.x; t/ D
384
4
1
X
nD1
1
.2n 1/
4
1 C
.1/
n
4
.2n 1/
cos
3.2n 1/t
2
cos
.2n 1/x
2
:
12.2.28. Since g
0
.0/ D g.1/ D g
00
.1/ D 0 and g
000
.x/ D 24.x 1/, Theorem 11.3.5(c) and Exer-
cise 11.2.42(b) imply that
ˇ
n
D
384
.2n 1/
3
3
Z
1
0
.x 1/ sin
.2n 1/ x
2
dx
D
768
.2n 1/
4
4
"
.x 1/ cos
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
cos
.2n 1/ x
2
#
dx
D
768
.2n 1/
4
4
"
1
2
.2n 1/
sin
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
768
.2n 1/
4
4
1 C
.1/
n
2
.2n 1/
I
C
Mg
.x/ D
384
4
1
X
nD1
1
.2n 1/
4
1 C
.1/
n
4
.2n 1/
cos
.2n 1/ x
2
:
From Exercise 12.2.17,
u.x; t/ D
768
3
5
1
X
nD1
1
.2n 1/
5
1 C
.1/
n
4
.2n 1/
sin
3.2n 1/t
2
cos
.2n 1/x
2
:
12.2.30. Since f
0
.0/ D f .1/ D f
00
.1/ D 0 and f
000
.x/ D 24.x 1/, Theorem 11.3.5(c) and Exer-
Section 12.2
The Wave Equation
253
cise 42(b) of Section 11.3 i mply that
˛
n
D
384
.2n 1/
3
3
Z
1
0
.x 1/ sin
.2n 1/x
2
dx
D
768
.2n 1/
4
4
"
.x 1/ cos
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
cos
.2n 1/ x
2
#
dx
D
768
.2n 1/
4
4
"
1
2
.2n 1/
sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
768
.2n 1/
4
4
1 C
.1/
n
2
.2n 1/
I
C
Mf
.x/ D
768
4
1
X
nD1
1
.2n 1/
4
1 C
.1/
n
2
.2n 1/
cos
.2n 1/ x
2
. From Exercise 12.2.17,
u.x; t/ D
768
4
1
X
nD1
1
.2n 1/
4
1 C
.1/
n
2
.2n 1/
cos
.2n 1/ t
2
cos
.2n 1/ x
2
:
12.2.32. Setting A D .2n 1/x=2L and B D .2n 1/at=2L in the identities
cos A cos B D
1
2
Œcos.A C B/ C cos.A B/ and cos A sin B D
1
2
Œsin.A C B/ sin.A B/ yields
cos
.2n 1/ at
2L
cos
.2n 1/x
2L
D
1
2
cos
.2n 1/.x C at/
2L
C cos
.2n 1/.x at/
2L
.A/
and
sin
.2n 1/ at
2L
cos
.2n 1/ x
2L
D
1
2
sin
.2n 1/.x C at/
2L
sin
.2n 1/.x at/
2L
D
.2n 1/
4L
Z
xCat
xat
cos
.2n 1/
2L
d :
.B/
Since C
Mf
.x/ D
1
X
nD1
˛
n
cos
.2n 1/x
2L
, (A) impli es th at
1
X
nD1
˛
n
cos
.2n 1/ at
2L
cos
.2n 1/x
2L
D
1
2
ŒC
Mf
.x C at/ C C
Mf
.x at/: .C/
Since it can be shown th at a mixed Fourier cosine series can be integrated term by term between any two
limits, (B) implies that
1
X
nD1
2Lˇ
n
.2n 1/ a
sin
.2n 1/at
2L
cos
.2n 1/ x
2L
D
1
2a
1
X
nD1
ˇ
n
Z
xCat
xat
cos
.2n 1/
2L
d
D
1
2a
Z
xCat
xat
1
X
nD1
ˇ
n
cos
.2n 1/
2L
!
d
D
1
2a
Z
xCat
xat
C
Mg
./ d :
254 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
This and (C) imply that
u.x; t/ D
1
2
ŒC
Mf
.x C at/ C C
Mf
.x at/ C
1
2a
Z
xCat
xat
C
Mg
./ d :
12.2.34. We begin by looking fo r functions of the form v.x; t/ D X.x/T .t/ that are no t identically zero
and satisfy v
tt
D a
2
v
xx
, v.0; t/ D 0, v
x
.L; t / D 0 for all .x; t/. As shown in the text, X and T must
satisfy X
00
C X D 0 and (B) T
00
C a
2
T D 0 for the same value of . Since v.0; t/ D X.0/T .t/
and v
x
.L; t / D X
0
.L/T .t/ and we don ’t want T to be identically zero, X.0/ D 0 and X
0
.L/ D 0.
Therefore, must be an eigenvalue of (C) X
00
C X D 0, X.0/ D 0, X
0
.L/ D 0, and X must be
a -eigenfunct ion. From Theorem 11.1.4, the eigenvalues of (C) are
n
D
.2n 1/
2
2
=4L
2
, i nteger), with
associated eigenfunctions X
n
D sin
.2n 1/x
2L
, n D 1, 2, 3,. . . . Substituting D
.2n 1/
2
2
4L
2
into
(B) yields T
00
C ..2n 1/
2
2
a
2
=4L
2
/T D 0, which has the general solution
T
n
D ˛
n
cos
.2n 1/ at
2L
C
n
L
.2n 1/a
sin
.2n 1/ at
2L
;
where ˛
n
and ˇ
n
are constants. Now let
v
n
.x; t/ D X
n
.x/T
n
.t/ D
˛
n
cos
.2n 1/at
2L
C
n
L
.2n 1/ a
sin
.2n 1/at
2L
sin
.2n 1/ x
2L
:
Then
@v
n
@t
.x; t/ D
.2n 1/ a
2L
˛
n
sin
.2n 1/ at
2L
C ˇ
n
cos
.2n 1/ at
2L
sin
.2n 1/x
2L
;
so
v
n
.x; 0/ D ˛
n
sin
.2n 1/ x
2L
and
@v
n
@t
.x; 0/ D ˇ
n
sin
.2n 1/ x
2L
:
Therefore,v
n
satisfies (A) with f .x/ D ˛
n
sin
.2n 1/ x
2L
and g.x/ D ˇ
n
sin
.2n 1/ x
2L
. More gen-
erally, if ˛
1
; ˛
2
; : : : ; ˛
m
and ˇ
1
; ˇ
2
; : : : ; ˇ
m
are constants and
u
m
.x; t/ D
m
X
nD1
˛
n
cos
.2n 1/ at
2L
C
n
L
.2n 1/ a
sin
.2n 1/at
2L
sin
.2n 1/ x
2L
;
then u
m
satisfies (A) with
f .x/ D
m
X
nD1
˛
n
sin
.2n 1/ x
2L
and g.x/ D
m
X
nD1
ˇ
n
sin
.2n 1/ x
2L
:
This motivates the definition.
Section 12.2
The Wave Equation
255
12.2.36. Since f .0/ D f
0
.1/ D 0, and f
00
.x/ D 6.1 2x/, Theorem 11.3.5(d) implies that
˛
n
D
48
.2n 1/
2
2
Z
1
0
.1 2x/ sin
.2n 1/ x
2
dx
D
96
.2n 1/
3
3
"
.1 2x/ cos
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
C 2
Z
1
0
cos
.2n 1/ x
2
dx
#
D
96
.2n 1/
3
3
"
1 C
4
.2n 1/
sin
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
96
.2n 1/
3
3
1 C.1/
n
4
.2n 1/
I
S
Mf
.x/ D
96
3
1
X
nD1
1
.2n 1/
3
1 C .1/
n
4
.2n 1/
sin
.2n 1/ x
2
. From Exercise 12.2.34,
u.x; t/ D
96
3
1
X
nD1
1
.2n 1/
3
1 C .1/
n
4
.2n 1/
cos
3.2n 1/t
2
sin
.2n 1/x
2
:
12.2.38. Since g.0/ D g
0
.1/ D 0, and g
00
.x/ D 6.1 2x/, Theorem 11.3.5(d) implies that
ˇ
n
D
48
.2n 1/
2
2
Z
1
0
.1 2x/ sin
.2n 1/x
2
dx
D
96
.2n 1/
3
3
"
.1 2x/ cos
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
C 2
Z
1
0
cos
.2n 1/x
2
dx
#
D
96
.2n 1/
3
3
"
1 C
4
.2n 1/
sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
96
.2n 1/
3
3
1 C .1/
n
4
.2n 1/
I
S
Mg
.x/ D
96
3
1
X
nD1
1
.2n 1/
3
1 C .1/
n
4
.2n 1/
sin
.2n 1/ x
2
. From Exercise 12.2.34,
u.x; t/ D
64
4
1
X
nD1
1
.2n 1/
4
1 C .1/
n
4
.2n 1/
sin
3.2n 1/t
2
sin
.2n 1/ x
2
:
12.2.40. Since f .0/ D f
0
./ D f
00
.0/ D 0 and f
000
.x/ D 6, Theorem 11.3.5(d) and Exercise 11.3.50(b)
imply that
˛
n
D
96
.2n 1/
3
Z
0
cos
.2n 1/x
2
dx D
192
.2n 1/
4
sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
0
D .1/
n
192
.2n 1/
4
I
S
Mf
.x/ D
192
1
X
nD1
.1/
n
.2n 1/
4
sin
.2n 1/x
2
. From Exercise 12.2.34,
u.x; t/ D
192
1
X
nD1
.1/
n
.2n 1/
4
cos
.2n 1/
p
3 t
2
sin
.2n 1/x
2
:
256 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
12.2.42. Since g.0/ D g
0
./ D g
00
.0/ D 0 and g
000
.x/ D 6, Theorem 11.3.5(d) and Exercise 5 0(b) imply
that
ˇ
n
D
96
.2n 1/
3
Z
0
cos
.2n 1/x
2
dx D
192
.2n 1/
4
sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
0
D .1/
n
192
.2n 1/
4
I
S
Mg
.x/ D
192
1
X
nD1
.1/
n
.2n 1/
4
sin
.2n 1/x
2
. From Exercise 12.2.34,
u.x; t/ D
384
p
3
1
X
nD1
.1/
n
.2n 1/
5
sin
.2n 1/
p
3 t
2
sin
.2n 1/x
2
:
12.2.44. Since f .0/ D f
0
.1/ D f
00
.0/ D 0 and f
000
.x/ D 12.2x 1/, Theorem 11.3.5(d) and Exer-
cise 11.3.50(b) imply that
˛
n
D
192
.2n 1/
3
3
Z
1
0
.2x 1/ cos
.2n 1/ x
2
dx
D
384
.2n 1/
4
4
"
.2x 1/ sin
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
2
Z
1
0
sin
.2n 1/x
2
dx
#
D
384
.2n 1/
4
4
"
.1/
nC1
C
4
.2n 1/
cos
.2n 1/ x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
384
.2n 1/
4
4
.1/
nC1
4
.2n 1/
D
384
.2n 1/
4
4
.1/
n
C
4
.2n 1/
I
S
Mf
.x/ D
384
4
1
X
nD1
1
.2n 1/
4
.1/
n
C
4
.2n 1/
sin
.2n 1/ x
2
. From Exercise 12.2.34,
u.x; t/ D
384
4
1
X
nD1
1
.2n 1/
4
.1/
n
C
4
.2n 1/
cos.2n 1/t sin
.2n 1/ x
2
:
12.2.46. Since g.0/ D g
0
.1/ D g
00
.0/ D 0 and g
000
.x/ D 12.2x 1/, Theorem 11.3.5(d) and Exer-
cise 11.3.50(b) imply that
ˇ
n
D
192
.2n 1/
3
3
Z
1
0
.2x 1/ cos
.2n 1/x
2
dx
D
384
.2n 1/
4
4
"
.2x 1/ sin
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
2
Z
1
0
sin
.2n 1/x
2
dx
#
D
384
.2n 1/
4
4
"
.1/
nC1
C
4
.2n 1/
cos
.2n 1/x
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
384
.2n 1/
4
4
.1/
nC1
4
.2n 1/
D
384
.2n 1/
4
4
.1/
n
C
4
.2n 1/
I
S
Mg
.x/ D
384
4
1
X
nD1
1
.2n 1/
4
.1/
n
C
4
.2n 1/
sin
.2n 1/x
2
. From Exercise 12.2.34,
u.x; t/ D
384
5
1
X
nD1
1
.2n 1/
5
.1/
n
C
4
.2n 1/
sin.2n 1/t sin
.2n 1/x
2
:
Section 12.2
The Wave Equation
257
12.2.48. Since f is continuous on Œ0; L and f
0
.L/ D 0, Theorem 11.3.4 implies that S
Mf
.x/ D f .x/,
0 x L. From Exercise 11.3.58, S
Mf
is the odd periodic extension (with period 2L) of the function
r.x/ D
f .x/; 0 x L;
f .2L x/; L < x 2L;
which is continuous on Œ0; 2L. Since r.0/ D r.2L/ D f .0/ D
0, S
Mf
is continuous on .1; 1/. Mo reover, r
0
.x/ D
f
0
.x/; 0 < x < L;
f
0
.2L x/; L < x < 2L;
r
0
C
.0/ D
f
0
C
.0/, r
0
.2L/ D f
0
C
.0/, and, sin ce f
0
.L/ D 0, r
0
.L/ D 0. Hence, r is differentiable on Œ0; 2L.
Since r .0/ D r.2L/ D f .0/ D 0, Theorem 12.2.3(a) with h D r, p D S
Mf
, and L replaced by 2L
implies that S
Mf
is differentiable o n .1; 1/. Similarly, S
Mg
is differentiable o n .1; 1/.
Now we n ote that r
00
.x/ D
f
00
.x/; 0 < x < L;
f
00
.2L x/; L < x < 2L;
r
00
.L/ D f
00
.L/, and r
00
C
.0/ D r
00
.2L/ D
f
00
C
.0/ D 0. Since S
0
Mf
is the even periodic extension of r
0
, Theorem 12.2.3(b) with h D r
0
, q D S
0
Mf
,
and L replaced by 2L implies that S
0
Mf
is differentiable o n .1; 1/. Now follow the argument u sed t o
complete the proof of Theorem 12.2.4.
12.2.50. From Example 11.3.5, C
f
.x/ D 4
768
4
1
X
nD1
1
.2n 1/
4
cos
.2n 1/x
2
. From Exercise 12.2.49,
u.x; t/ D 4
768
4
1
X
nD1
1
.2n 1/
4
cos
p
5.2n 1/t
2
cos
.2n 1/x
2
:
12.2.52. ˛
0
D
Z
0
.3x
4
4Lx
3
/ dx D
3x
5
5
x
4
ˇ
ˇ
ˇ
ˇ
0
D
2
4
5
. Since f
0
.0/ D f
0
./ D 0 and
f
000
.x/ D 24.3x /, Theorem 11.3.5(a) i mplies that
˛
n
D
48
n
3
Z
0
.3x / sin nx dx D
48
n
4
.3x / cos nx
ˇ
ˇ
ˇ
ˇ
0
3
Z
0
cos nx dx
D
48
n
4
Œ.1/
n
2 C C
144
n
5
sin nx
ˇ
ˇ
ˇ
ˇ
0
D
48
n
4
Œ1 C .1/
n
2 ; n 1I
C
f
.x/ D
2
4
5
48
1
X
nD1
1 C .1/
n
2
n
4
cos nx. From Exercise 12 .2.49,
u.x; t/ D
2
4
5
48
1
X
nD1
1 C .1/
n
2
n
4
cos 2nt cos nx:
12.2.54. ˇ
0
D
Z
0
.3x
4
4Lx
3
/ dx D
1
3x
5
5
x
4
ˇ
ˇ
ˇ
ˇ
0
D
2
4
5
. Since g
0
.0/ D g
0
./ D 0 and
g
000
.x/ D 24.3x /, Theorem 11.3.5(a) implies that
ˇ
n
D
48
n
3
Z
0
.3x / sin nx dx D
48
n
4
.3x / cos nx
ˇ
ˇ
ˇ
ˇ
0
3
Z
0
cos nx dx
D
48
n
4
Œ.1/
n
2 C C
144
n
5
sin nx
ˇ
ˇ
ˇ
ˇ
0
D
48
n
4
Œ1 C .1/
n
2 ; n 1I
258 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
C
g
.x/ D
2
4
5
48
1
X
nD1
1 C .1/
n
2
n
4
cos nx. From Exercise 12.2.49,
u.x; t/ D
2
4
t
5
24
1
X
nD1
1 C .1/
n
2
n
5
sin 2nt cos nx:
12.2.56. ˛
0
D
1
Z
0
.x
4
2x
3
C
2
x
2
/ dx D
1
x
5
5
x
4
2
C
2
x
3
3
ˇ
ˇ
ˇ
ˇ
0
D
4
30
. Since f
0
.0/ D
f
0
./ D 0 and f
000
.x/ D 12.2x /, Theorem 11.3.5(a) implies that
˛
n
D
24
n
3
Z
0
.2x / sin nx dx D
24
n
4
.2x / cos nx
ˇ
ˇ
ˇ
ˇ
0
2
Z
0
cos nx dx
D
24
n
4
Œ.1/
n
C C
48
n
5
sin nx
ˇ
ˇ
ˇ
ˇ
0
D
24
n
4
Œ1 C .1/
n
D
(
0 if n D 2m 1;
3
m
4
if n D 2m;
n 1I
C
f
.x/ D
4
30
3
1
X
nD1
1
n
4
cos 2nx. From Exercise 12.2.49, u.x; t/ D
4
30
3
1
X
nD1
1
n
4
cos 8nt cos 2nx.
12.2.58. ˇ
0
D
1
Z
0
.x
4
2x
3
C
2
x
2
/ dx D
1
x
5
5
x
4
2
C
2
x
3
3
ˇ
ˇ
ˇ
ˇ
0
D
4
30
. Since g
0
.0/ D
g
0
./ D 0 and g
000
.x/ D 12.2x /, Theorem 11.3.5(a) implies that
ˇ
n
D
24
n
3
Z
0
.2x / sin nx dx D
24
n
4
.2x / cos nx
ˇ
ˇ
ˇ
ˇ
0
2
Z
0
cos nx dx
D
24
n
4
Œ.1/
n
C C
48
n
5
sin nx
ˇ
ˇ
ˇ
ˇ
0
D
24
n
4
Œ1 C .1/
n
D
(
0 if n D 2m 1;
3
m
4
if n D 2m;
1I
C
g
.x/ D
4
30
3
1
X
nD1
1
n
4
cos 2nx. From Exercise 12.2.49, u.x; t/ D
4
t
30
3
8
1
X
nD1
1
n
5
sin 8nt cos 2nx.
12.2.60. Setting A D nx=L and B D nat=L in the iden tities cos A cos B D
1
2
Œcos.ACB/Ccos.A
B/ and cos A sin B D
1
2
Œsin.A C B/ sin.A B/ yields
cos
nat
L
cos
nx
L
D
1
2
cos
n.x C at/
L
C cos
n.x at/
L
.A/
and
sin
nat
L
cos
nx
L
D
1
2
sin
n.x C at/
L
sin
n.x at/
L
D
n
2L
Z
xCat
xat
cos
n
L
d :
.B/
Section 12.2
The Wave Equation
259
Since C
f
.x/ D ˛
0
C
1
X
nD1
˛
n
sin
nx
L
, (A) implies that
˛
0
C
1
X
nD1
˛
n
cos
nat
L
cos
nx
L
D
1
2
ŒC
f
.x C at/ C C
f
.x at/: .C/
Since it can be shown that a Fourier sine series can be integrated term by term between any two limits,
(B) i mplies that
ˇ
0
t C
1
X
nD1
ˇ
n
L
na
sin
nat
L
cos
nx
L
D ˇ
0
t C
1
2a
1
X
nD1
ˇ
n
Z
xCat
xat
cos
n
L
d
D
1
2a
Z
xCat
xat
ˇ
0
C
1
X
nD1
ˇ
n
cos
n
L
!
d
D
1
2a
Z
xCat
xat
C
g
./ d :
This and (C) imply that
u.x; t/ D
1
2
ŒC
f
.x C at/ CC
f
.x at/ C
1
2a
Z
xCat
xat
C
g
./ d :
12.2.62.(a). Since jp
n
.x/j 1 and jq
n
.t/j 1 for all t, jk
n
p
n
.x/q
n
.t/j jk
n
j for all .x; t/, and th e
comparison test implies the conclusion.
(b) If t is fixed but arbitrary, then jk
n
p
0
n
.x/q
n
.t/j jjnjk
n
j, so Theorem 12.1.2 with ´ D x and
w
n
.x/ D k
n
p
n
.x/q
n
.t/ justifies term by term differentiation with respect to x on .1; 1/. If x is fixed
but arbitrary, then jk
n
p
n
.x/q
0
n
.t/j jjnjk
n
j, so Theorem 12.1.2 with ´ D t and w
n
.t/ D k
n
p
n
.x/q
n
.t/
justifies term by term differentiation with respect to t on .1; 1/.
(c) The argument is similar to argument use in (b).
(d) Apply (b) and (c) to the series
1
X
nD1
˛
n
cos
nat
L
sin
nx
L
and
1
X
nD1
ˇ
n
L
na
sin
nat
L
sin
nx
L
, recall-
ing that the individual terms in the series satisfy u
tt
D a
2
u
xx
for all .x; t/.
(d) u.x; t/ D
f .x C ct/ C f .x ct/
2
C
1
2a
Z
xCat
xat
g.u/ du.
12.2.64.
u.x; t/ D
.x C at/ C .x at/
2
C
1
2a
Z
xCat
xat
4au du D x C 2
Z
xCat
xat
u du D x C u
2
ˇ
ˇ
ˇ
ˇ
xCat
xat
D x C .x C at/
2
.x at/
2
D x.1 C 4at/:
12.2.66.
u.x; t/ D
sin.x C at/ C sin.x at/
2
C
1
2a
Z
xCat
xat
a cos u du
D
sin.x C at/ C sin.x at/
2
C
sin.x C at/ sin.x at/
2
D sin.x C at/:
260 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
12.2.68.
u.x; t/ D
.x Cat/ sin.x C at/ C .x at/ sin .x at/
2
C
1
2a
Z
xCat
xat
sin u du
D
xŒsin.x C at/ C sin.x at/
2
C
atŒsin.x C at/ sin.x at/
2
C
cos.x at/ cos.x C at/
2a
D x sin x cos at C at cos x sin at C
sin x sin at
a
:
12.3 LAPLACE’S EQUATION IN RECTANGULAR COORDINATES
12.3.2. Since f .0/ D f .1/ D 0 and f
00
.x/ D 2 6x, Theorem 11.3.5(b) implies that
˛
n
D
4
n
2
2
Z
1
0
.4 6x/ sin
nx
2
dx D
8
n
3
3
"
.4 6x/ cos
nx
2
ˇ
ˇ
ˇ
ˇ
2
0
C6
Z
2
0
cos
nx
2
dx
#
D
32
n
3
3
.1 C .1/
n
2/ C
96
n
4
4
sin
nx
2
ˇ
ˇ
ˇ
ˇ
2
0
D
32
n
3
3
Œ1 C .1/
n
2 I
S.x/ D
32
3
1
X
nD1
Œ1 C .1/
n
2
n
3
sin
nx
2
. From Example 12.3.1,
u.x; y/ D
32
3
1
X
nD1
Œ1 C .1/
n
2 si nh n.3 y/=2
n
3
sinh 3n=2
sin
nx
2
:
12.3.4.
˛
1
D
2
Z
0
x sin
2
x dx D
1
Z
0
x.1 cos 2x/ dx D
x
2
2
ˇ
ˇ
ˇ
ˇ
0
1
Z
0
x cos 2x dx
D
2
1
2
x sin 2x
ˇ
ˇ
ˇ
ˇ
0
Z
0
cos 2x dx
D
2
C
sin 2x
4
ˇ
ˇ
ˇ
ˇ
0
D
2
I
if n 2, then
˛
n
D
2
Z
0
x sin x sin nx dx D
1
Z
0
xŒcos.n 1/x cos.n C 1/x dx
D
1
x
sin.n 1/x
n 1
sin.n C 1/x
n C 1
ˇ
ˇ
ˇ
ˇ
0
Z
0
sin.n 1/x
n 1
sin.n C 1/x
n C 1
dx
D
1
cos.n 1/x
.n 1/
2
cos.n C 1/x
.n C 1/
2
ˇ
ˇ
ˇ
ˇ
0
D
1
1
.n 1/
2
1
.n C 1/
2
.1/
nC1
1
D
4n
.n
2
1/
2
.1/
nC1
1
D
8
<
:
0 i f n D 2m 1;
16m
.4m
2
1/
if n D 2mI
S.x/ D
2
sin x
16
1
X
nD1
n
.4n
2
1/
2
sin 2nx. From Example 12.3.1,
u.x; y/ D
2
sinh.1 y/
sinh 1
sin x
16
1
X
nD1
n sinh 2n.1 y/
.4n
2
1/
2
sinh 2n
sin 2nx:
Section 12.3
Laplaces Equation in Rectangular Coordinates
261
12.3.6. ˛
0
D
Z
1
0
.1 x/ dx D
.1 x/
2
2
ˇ
ˇ
ˇ
ˇ
1
0
D
1
2
; if n 1,
˛
n
D 2
Z
1
0
.1 x/ cos n x dx D
2
n
"
.1 x/ sin n x
ˇ
ˇ
ˇ
ˇ
1
0
C
Z
1
0
sin nx dx
#
D
2
n
2
2
cos n x
ˇ
ˇ
ˇ
ˇ
1
0
D
2
n
2
2
Œ1 .1/
n
D
8
<
:
4
.2m 1/
2
2
if n D 2m 1;
0 if n D 2mI
C.x/ D
1
2
C
4
2
1
X
nD1
1
.2n 1/
2
cos.2n 1/x. From Example 12.3.3,
u.x; y/ D
y
2
C
4
3
1
X
nD1
sinh.2n 1/y
.2n 1/
3
cosh 2.2n 1/
cos.2n 1/x:
12.3.8. ˛
0
D
Z
1
0
.x 1/
2
dx D
.x 1/
3
3
ˇ
ˇ
ˇ
ˇ
1
0
D
1
3
; if n 1, then
˛
n
D 2
Z
1
0
.x 1/
2
cos nx dx D
2
n
"
.x 1/
2
sin nx
ˇ
ˇ
ˇ
ˇ
1
0
2
Z
1
0
.x 1/ sin nx dx
#
D
4
n
2
2
"
.x 1/ cos nx
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
cos nx dx
#
D
4
n
2
2
4
n
3
3
sin n x
ˇ
ˇ
ˇ
ˇ
1
0
D
4
n
2
2
I
C.x/ D
1
3
C
4
2
1
X
nD1
1
n
2
cos n x. From Example 12.3.3, u.x; y/ D
y
3
C
4
3
1
X
nD1
sinh ny
n
3
cosh n
cos n x.
12.3.10. Since g.0/ D g
0
.1/ D 0, and g
00
.y/ D 6.1 2y/, Theorem 11.3.5(d) implies that
˛
n
D
48
.2n 1/
2
2
Z
1
0
.1 2y/ sin
.2n 1/y
2
dy
D
96
.2n 1/
3
3
"
.1 2y/ cos
.2n 1/y
2
ˇ
ˇ
ˇ
ˇ
1
0
C 2
Z
1
0
cos
.2n 1/y
2
dy
#
D
96
.2n 1/
3
3
"
1 C
4
.2n 1/
sin
.2n 1/y
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
96
.2n 1/
3
3
1 C .1/
n
4
.2n 1/
I
S
M
.y/ D
96
3
1
X
nD1
1
.2n 1/
3
1 C .1/
n
4
.2n 1/
sin
.2n 1/y
2
. From Example 12.3.5,
u.x; y/ D
96
3
1
X
nD1
1 C .1/
n
4
.2n 1/
cosh.2n 1/.x 2/=2
.2n 1/
3
cosh 2.2n 1/=2
sin
.2n 1/y
2
:
262 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
12.3.12. From Example 11.3.8.3,
S
M
.y/ D
96
3
1
X
nD1
1
.2n 1/
3
3 C .1/
n
4
.2n 1/
sin
.2n 1/y
2
:
From Example 12.3.5,
u.x; y/ D
96
3
1
X
nD1
3 C .1/
n
4
.2n 1/
cosh.2n 1/.x 3/=2
.2n 1/
3
cosh 3.2n 1/=2
sin
.2n 1/y
2
:
12.3.14.
c
n
D
2
3
Z
3
0
.3y y
2
/ cos
.2n 1/y
6
dy
D
4
.2n 1/
"
.3y y
2
/ sin
.2n 1/y
6
ˇ
ˇ
ˇ
ˇ
3
0
Z
3
0
.3 2y/ sin
.2n 1/y
6
dy
#
D
24
.2n 1/
2
2
"
.3 2y/ cos
.2n 1/y
6
ˇ
ˇ
ˇ
ˇ
3
0
C 2
Z
3
0
cos
.2n 1/y
6
dy
#
D
72
.2n 1/
2
2
C
288
.2n 1/
3
3
sin
.2n 1/y
6
ˇ
ˇ
ˇ
ˇ
3
0
D
288
.2n 1/
3
3
sin
.2n 1/y
2
D
72
.2n 1/
2
2
C .1/
n1
288
.2n 1/
3
3
I
C
M
.y/ D
72
2
1
X
nD1
1
.2n 1/
2
1 C
4.1/
n
.2n 1/
cos
.2n 1/y
6
. From Example 12.3.7,
u.x; y/ D
432
3
1
X
nD1
1 C
4.1/
n
.2n 1/
cosh.2n 1/x=6
.2n 1/
3
sinh.2n 1/=3
cos
.2n 1/y
6
:
12.3.16. Since g
0
.0/ D g.1/ D 0 and g
00
.y/ D 6y, Theorem 11.3.5(c) implies that
˛
n
D
48
.2n 1/
2
2
Z
1
0
y cos
.2n 1/y
2
dy
D
96
.2n 1/
3
3
"
y sin
.2n 1/y
2
ˇ
ˇ
ˇ
ˇ
1
0
Z
1
0
sin
.2n 1/y
2
dy
#
D
96
.2n 1/
3
3
"
.1/
nC1
C
2
.2n 1/
cos
.2n 1/y
2
ˇ
ˇ
ˇ
ˇ
1
0
#
D
96
.2n 1/
3
3
.1/
n
C
2
.2n 1/
dyI
C
M
.y/ D
96
3
1
X
nD1
1
.2n 1/
3
.1/
n
C
2
.2n 1/
cos
.2n 1/y
2
. From Example 12.3.7,
u.x; y/ D
192
4
1
X
nD1
cosh.2n 1/x=2
.2n 1/
4
sinh.2n 1/=2
.1/
n
C
2
.2n 1/
cos
.2n 1/y
2
:
Section 12.3
Laplaces Equation in Rectangular Coordinates
263
12.3.18. The boundary conditions require products v.x; y/ D X.x/Y.y/ such that (A) X
00
C X D 0,
X
0
.0/ D 0, X
0
.a/ D 0, and ( B) Y
00
Y D 0, Y.0/ D 1, Y.b/ D 0. From Theorem 11.1.3, the eigenval-
ues of (A) are D 0, with associated eigenfu nction X
0
D 1, and
n
D
n
2
2
a
2
, with associated eigenfunc-
tions Y
n
D cos
nx
a
, n D 1, 2, 3,. . . . Substituting D 0 into (B) yields Y
00
0
D 0, Y
0
.0/ D 1, Y
0
.b/ D 0,
so Y
0
.y/ D 1
y
b
. Substi tuting D
n
2
2
a
2
into (B) yields Y
00
n
.n
2
2
=a
2
/Y
n
D 0, Y
n
.0/ D 1, Y
n
.b/ D
0, so Y
n
D
sinh n.b y/=a
sinh nb=a
. Then v
n
.x; y/ D X
n
.x/Y
n
.y/ D
sinh n.b y/=a
sinh n b=a
cos
nx
a
, so
v
n
.x; 0/ D cos
nx
a
. Therefore,v
n
is solution of the given problem with f .x/ D cos
nx
a
. More gener-
ally, if ˛
0
; : : : ; ˛
m
are arbitrary constants, then u
m
.x; y/ D ˛
0
1
y
b
C
m
X
nD1
˛
n
sinh n.b y/=a
sinh nb=a
cos
nx
a
is a solution of the given problem with f .x/ D ˛
0
C
m
X
nD1
˛
n
cos
nx
a
. Therefore, if f is an arbi-
trary piecewise smooth function on Œ0; a we d efine the formal solution of the given problem to b e
u.x; y/ D ˛
0
1
y
b
C
1
X
nD1
˛
n
sinh n.b y/=a
sinh n b=a
cos
nx
a
, where C.x/ D ˛
0
C
1
X
nD1
˛
n
cos
nx
a
is
the Fourier cosi ne series of f on Œ0; a; t hat is, ˛
0
D
1
a
Z
a
0
f .x/ dx and ˛
n
D
2
a
Z
a
0
f .x/ cos
nx
a
dx,
n 1.
Now consider the special case. ˛
0
D
1
2
Z
2
0
.x
4
4x
3
C 4x
2
/ dx D
1
2
x
5
5
x
4
C
4x
3
3
ˇ
ˇ
ˇ
ˇ
2
0
D
6
5
.
Since f
0
.0/ D f
0
.2/ D 0 and f
000
.x/ D 12.2x 2/, Theorem 11 .3.5(a) implies that
˛
n
D
96
n
3
3
Z
2
0
.2x 2/ sin
nx
2
dx D
192
n
4
4
"
.2x 2/ cos
nx
2
ˇ
ˇ
ˇ
ˇ
2
0
2
Z
2
0
cos
nx
2
dx
#
D
192
n
4
4
Œ.1/
n
2 C 2 C
768
n
5
5
sin
nx
2
ˇ
ˇ
ˇ
ˇ
2
0
D
384
n
4
4
Œ1 C .1/
n
D
(
0 if n D 2m 1;
48
m
4
4
if n D 2m;
n 1:
C.x/ D
8
15
48
4
1
X
nD1
1
n
4
cos n x; u.x; y/ D
8.1 y/
15
48
4
1
X
nD1
1
n
4
sinh n.1 y/
sinh n
cos n x.
12.3.20. The boundary conditions require products v.x; y/ D X.x/Y.y/ such that (A) X
00
C X D 0,
X.0/ D 0, X
0
.a/ D 0, and (B) Y
00
Y D 0, Y .0/ D 1, Y .b/ D 0. From Theorem 11.1.4, the
eigenvalues of (A) are
n
D
.2n 1/
2
2
4a
2
, with associated eigenfun ctions Y
n
D sin
.2n 1/ x
2a
,
n D 1, 2, 3,. . . . Substituting D
.2n 1/
2
2
4a
2
into (B) yields Y
00
n
..2n 1/
2
2
=4a
2
/Y
n
D 0,
Y
n
.0/ D 1, Y
n
.b/ D 0, so Y
n
D
sinh.2n 1/.b y/=2a
sinh.2n 1/b=2a
. Then v
n
.x; y/ D X
n
.x/Y
n
.y/ D
sinh.2n 1/.b y/=2a
sinh.2n 1/b=2a
sin
.2n 1/x
2a
, so v
n
.x; 0/ D sin
.2n 1/ x
2a
. Therefore,v
n
is solution of
264 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
the given problem with f .x/ D sin
.2n 1/ x
2a
. More generally, if ˛
1
; : : : ; ˛
m
are arbitrary constants,
then u
m
.x; y/ D
m
X
nD1
˛
n
sinh.2n 1/.b y/=2a
sinh.2n 1/b=2a
cos
.2n 1/ x
2a
is a solution o f the given problem
with f .x/ D
m
X
nD1
˛
n
sin
.2n 1/ x
2a
. Therefore, if f is an arbitrary piecewise smooth function on Œ0; a
we define the formal solution of the given problem to be u.x; y/ D
1
X
nD1
˛
n
sinh.2n 1/.b y/=2a
sinh.2n 1/b=2a
sin
.2n 1/ x
2a
,
where S
m
.x/ D
1
X
nD1
˛
n
sin
.2n 1/ x
2a
is the mixed Fourier sine series of f on Œ0; a; that is, ˛
n
D
2
a
Z
a
0
f .x/ sin
.2n 1/ x
2a
.
Now consider the special case. Since f .0/ D f
0
.L/ D 0 and f
00
.x/ D 2, Theorem 11.3.5(d) implies
that
˛
n
D
48
.2n 1/
2
2
Z
3
0
sin
.2n 1/ x
6
dx D
288
.2n 1/
3
3
cos
.2n 1/ x
6
ˇ
ˇ
ˇ
ˇ
3
0
D
288
.2n 1/
3
3
I
S
M
.x/ D
288
3
1
X
nD1
1
.2n 1/
3
sin
.2n 1/ x
6
I
u.x; y/ D
288
3
1
X
nD1
sinh.2n 1/.2 y/=6
.2n 1/
3
sinh.2n 1/=3
sin
.2n 1/x
6
:
12.3.22. The boundary conditions require products v.x; y/ D X.x/Y.y/ such that (A) X
00
C X D 0,
X
0
.0/ D 0, X
0
.a/ D 0, and (B) Y
00
Y D 0, Y
0
.0/ D 0, Y.b/ D 1. From Theorem 1 1.1.3, the
eigenvalues of (A) are D 0, with associated eigenfunction X
0
D 1, and
n
D
n
2
2
a
2
, wit h associated
eigenfunctions Y
n
D cos
nx
a
, n D 1, 2, 3,. . . . Substituting D 0 into (B) yields Y
00
0
D 0, Y
0
0
.0/ D 0,
Y
0
.b/ D 1, so Y
0
D 1. Substituti ng D
n
2
2
a
2
into (B) y ields Y
00
n
.n
2
2
=a
2
/Y
n
D 0, Y
0
n
.0/ D
0, Y
n
.b/ D 1, so Y
n
D
cosh ny=a
cosh nb=a
. Then v
n
.x; y/ D X
n
.x/Y
n
.y/ D
sinh ny=a
cosh nb=a
cos
nx
a
, so
v
n
.x; b/ D cos
nx
a
. Therefore,v
n
is solu tion of the given problem with f .x/ D cos
nx
a
. More
generally, i f ˛
0
; : : : ; ˛
m
are arbitrary constants, then u
m
.x; y/ D ˛
0
C
m
X
nD1
˛
n
cosh ny=a
cosh nb=a
cos
nx
a
is
a sol ution of the given problem with f .x/ D ˛
0
C
m
X
nD1
˛
n
cos
nx
a
. Therefore, if f is an arbitrary
piecewise smooth funct ion on Œ0; a we define the formal solution of the given prob lem to be u.x; y/ D
˛
0
C
1
X
nD1
˛
n
cosh ny=a
cosh nb=a
cos
nx
a
, where C.x/ D ˛
0
C
1
X
nD1
˛
n
cos
nx
a
is the Fourier cosine series of
f on Œ0; a; that is, ˛
0
D
1
a
Z
a
0
f .x/ dx and ˛
n
D
2
a
Z
a
0
f .x/ cos
nx
a
dx, n 1.
Section 12.3
Laplaces Equation in Rectangular Coordinates
265
Now consider the special case.
˛
0
D
1
Z
0
.x
4
2x
3
C
2
x
2
/ dx D
1
x
5
5
x
4
2
C
2
x
3
3
ˇ
ˇ
ˇ
ˇ
0
D
4
30
:
Since f
0
.0/ D f
0
./ D 0 and f
000
.x/ D 12.2x /, Theorem 11.3.5(a) implies that
˛
n
D
24
n
3
Z
0
.2x / sin nx dx D
24
n
4
.2x / cos nx
ˇ
ˇ
ˇ
ˇ
0
2
Z
0
cos nx dx
D
24
n
4
Œ.1/
n
C C
48
n
5
sin nx
ˇ
ˇ
ˇ
ˇ
0
D
24
n
4
Œ1 C .1/
n
D
(
0 if n D 2m 1;
3
m
4
if n D 2m;
n 1I
C.x/ D
4
30
3
1
X
nD1
1
n
4
cos 2nx; u.x; y/ D
4
30
3
1
X
nD1
1
n
4
cosh 2ny
cos 2n
cos 2nx
12.3.24. The boundary conditions require products v.x; y/ D X.x/Y .y/ such that (A) X
00
X D
0, X
0
.0/ D 0, X.a/ D 1, and (B) Y
00
C Y D 0, Y.0/ D 0, Y .b/ D 0. From Theorem 11.1.2,
the eigenvalues of (B ) are
n
D
n
2
2
b
2
, with associated eigenfunctions Y
n
D sin
ny
b
, n D 1, 2,
3,. . . . Substituting D
n
2
2
b
2
into ( A ) yields X
00
n
.n
2
2
=b
2
/X
n
D 0, X
0
n
.0/ D 0, X
n
.a/ D 1, so
X
n
D
cosh nx=b
cosh na=b
. Then v
n
.x; y/ D X
n
.x/Y
n
.y/ D
cosh nx=b
cosh na=b
sin
ny
b
, so v
n
.a; y/ D sin
ny
b
.
Therefore,v
n
is solu tion of the given problem with g.y/ D sin
ny
b
. More generally, if ˛
1
; : : : ; ˛
m
are arbitrary constants, then u
m
.x; y/ D
m
X
nD1
˛
n
cosh nx=b
cosh na=b
sin
ny
b
is a solution of the given problem
with g.y/ D
m
X
nD1
˛
n
sin
ny
b
. Therefore, if g is an arbitrary piecewise smooth function on Œ0; b we
define the formal solution of the given problem to be u.x; y/ D
1
X
nD1
˛
n
cosh nx=b
cosh na=b
sin
ny
b
, where
S.y/ D
1
X
nD1
˛
n
sin
ny
b
is the Fourier sine series of g on Œ0; b; that is, ˛
n
D
2
b
Z
b
0
g.y/ sin
ny
b
dy.
Now consider t he special case. Since g.0/ D g.1/ D g
00
.0/ D g
00
.L/ D 0 and f
.4/
.y/ D 24,
Theorem 11.3.5(b) and Exercise 35(b) of Section 11.3 imply that
˛
n
D
48
n
4
4
Z
1
0
sin ny dy D
48
n
5
5
cos ny
ˇ
ˇ
ˇ
ˇ
1
0
D
48
n
5
5
Œ.1/
n
1 D
8
<
:
96
.2m 1/
5
5
if n D 2m 1
0 if n D 2mI
S.y/ D
96
5
1
X
nD1
1
.2n 1/
5
sin.2n 1/y; u.x; y/ D
96
5
1
X
nD1
cosh.2n 1/x
.2n 1/
5
cosh.2n 1/
sin.2n 1/y.
266 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
12.3.26. The boundary conditions require p roducts v.x; y/ D X.x/Y.y/ such th at (A) X
00
X D 0,
X
0
.0/ D 0, X
0
.a/ D 1, and (B) Y
00
C Y D 0, Y .0/ D 0, Y.b/ D 0. From Theorem 11.1.2, the
eigenvalues of (B) are
n
D
n
2
2
b
2
, wi th associated eigenfunctions Y
n
D sin
ny
b
, n D 1, 2, 3,. . . .
Substituting D
n
2
2
b
2
into (A) yields X
00
n
.n
2
2
=b
2
/X
n
D 0, X
0
n
.0/ D 0, X
0
n
.a/ D 1, so X
n
D
b
n
cosh nx=b
sinh na=b
. Then v
n
.x; y/ D X
n
.x/Y
n
.y/ D
b
n
cosh nx=b
sinh na=b
sin
ny
b
, so
@v
n
@x
.a; y/ D sin
ny
b
.
Therefore,v
n
is solut ion of the given problem with g.y/ D sin
ny
b
. More generally, if ˛
1
; : : : ; ˛
m
are
arbitrary constants, then u
m
.x; y/ D
b
m
X
nD1
˛
n
cosh nx=b
n sinh n a=b
sin
ny
b
is a solution of the given problem
with g.y/ D
m
X
nD1
˛
n
sin
ny
b
. Therefore, if g is an arbitrary piecewise smooth function on Œ0; b we
define the formal solution of the given problem to be u.x; y/ D
b
1
X
nD1
˛
n
cosh nx=b
n sinh na=b
sin
ny
b
, where
S.y/ D
1
X
nD1
˛
n
sin
ny
b
is the Fourier sine series of g on Œ0; b; that is, ˛
n
D
2
b
Z
b
0
g.y/ sin
ny
b
dy.
Now consider the special case. ˛
n
D
1
2
Z
2
0
y sin
ny
4
C
Z
4
2
.4 y/ sin
ny
4
dy
;
Z
2
0
y sin
ny
4
dy D
4
n
"
y cos
ny
4
ˇ
ˇ
ˇ
ˇ
2
0
Z
2
0
cos
ny
4
dy
#
D
2
n
cos
n
2
C
4
n
2
2
sin
ny
4
ˇ
ˇ
ˇ
ˇ
2
0
D
2
n
cos
n
2
C
4
n
2
2
sin
n
2
I
Z
2
0
.4 y/ sin
ny
4
dy D
2
n
"
.4 y/ cos
ny
4
ˇ
ˇ
ˇ
ˇ
4
2
C
Z
2
0
cos
ny
4
dy
#
D
2
n
cos
n
2
4
n
2
2
sin
ny
4
ˇ
ˇ
ˇ
ˇ
4
2
D
2
n
cos
n
2
C
4
n
2
2
sin
n
2
I
˛
n
D
16
n
2
2
sin
n
2
D
8
<
:
.1/
mC1
16
.2m 1/
2
2
if n D 2m 1
0 if n D 2mI
S.y/ D
16
2
1
X
nD1
.1/
nC1
.2n 1/
2
sin
.2n 1/y
4
I
u.x; y/ D
64
3
1
X
nD1
.1/
nC1
cosh.2n 1/x=4
.2n 1/
3
sinh.2n 1/=4
sin
.2n 1/y
4
:
12.3.28. The boundary conditions require p roducts v.x; y/ D X.x/Y.y/ such th at (A) X
00
X D 0,
X
0
.0/ D 1, X.a/ D 0, and (B) Y
00
C Y D 0, Y
0
.0/ D 0, Y
0
.b/ D 0. From Theorem 11.1.3, the
Section 12.3
Laplaces Equation in Rectangular Coordinates
267
eigenvalues of (B) are
0
D 0, with associated ei genfunction Y
0
D 1, and
n
D
n
2
2
b
2
, with associ-
ated eigenfunctions Y
n
D cos
ny
b
, n D 1, 2, 3,. . . . Substituting
0
D 0 into (A) yield s X
00
0
D 0,
X
0
0
.0/ D 1 X.a/ D 0, so X
0
D x a. Substituting D
n
2
2
b
2
into (A) yields X
00
n
.n
2
2
=b
2
/X
n
D
0, X
0
n
.0/ D 1, X
n
.a/ D 0, so X
n
D
b
n
sinh n.x a/=b
cosh na=b
. Then v
n
.x; y/ D X
n
.x/Y
n
.y/ D
b
n
sinh n.x a/=b
cosh na=b
cos
ny
b
, so
@v
n
@x
.0; y/ D cos
ny
b
. Therefore,v
n
is solution of the given prob-
lem with g.y/ D cos
ny
b
. More generally, if ˛
0
; : : : ; ˛
m
are arbitrary constants, th en u
m
.x; y/ D
˛
0
.x a/ C
b
m
X
nD1
˛
n
sinh n.x a/=b
n cosh na=b
cos
ny
b
is a solution of t he given problem with g.y/ D
m
X
nD1
˛
n
cos
ny
b
. Therefore, if g is an arbitrary piecewise smooth function on Œ0; b we define the formal
solution of the given problem to be u.x; y/ D ˛
0
.x a/ C
b
1
X
nD1
˛
n
sinh n.x a/=b
n cosh na=b
cos
ny
b
where
C.y/ D ˛
0
C
1
X
nD1
˛
n
cos
ny
b
is the Fourier co sine series of g on Œ0; b; that is, ˛
0
D
1
b
Z
b
0
g.y/ cos
ny
b
dy,
˛
n
D
2
b
Z
b
0
g.y/ cos
ny
b
dy, n 1.
Now consider the special case. From Example 11.3.1,
C.y/ D
2
4
1
X
nD1
1
.2n 1/
2
cos.2n 1/yI
u.x; y/ D
.x 2/
2
4
1
X
nD1
sinh.2n 1/.x 2/
.2n 1/
3
cosh 2.2n 1/
cos.2n 1/y:
12.3.30. The boundary conditions require products v.x; y/ D X.x/Y.y/ such that (A) X
00
C X D 0,
X
0
.0/ D 0, X.a/ D 0, and (B) Y
00
Y D 0, Y.0/ D 1, and Y is bounded. From Theorem 1 1.1.5, the
eigenvalues of (A) are
n
D
.2n 1/
2
2
4a
2
, with associated eigenfuncti ons Y
n
D cos
.2n 1/ x
2a
, n D 1,
2, 3,. . . . Substitut ing D
.2n 1/
2
2
4a
2
into (B) yields Y
00
n
..2n 1/
2
2
=4a
2
/Y
n
D 0, Y
n
.0/ D 1, so
Y
n
D e
.2n1/y=2a
. Then v
n
.x; y/ D X
n
.x/Y
n
.y/ D e
.2n1/y=2a
cos
.2n 1/x
2a
, so v
n
.x; 0/ D
cos
.2n 1/x
2a
. Therefore,v
n
is solution of the given problem with f .x/ D cos
.2n 1/x
2a
. More
generally, if ˛
1
; : : : ; ˛
m
are arbitrary constants, then u
m
.x; y/ D
m
X
nD1
˛
n
e
.2n1/y=2a
cos
.2n 1/x
2a
is a solution of the given problem with f .x/ D
m
X
nD1
˛
n
cos
.2n 1/ x
2a
. Therefore, i f f is an ar-
bitrary piecewise smooth fu nction on Œ0; a we define the formal solution o f the given prob lem to be
268 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
u.x; y/ D
1
X
nD1
˛
n
e
.2n1/y=2a
cos
.2n 1/ x
2a
, where C
m
.x/ D
1
X
nD1
˛
n
cos
.2n 1/ x
2a
is the mixed
Fourier cosine series of f on Œ0; a; that is, ˛
n
D
2
a
Z
a
0
f .x/ cos
.2n 1/ x
2a
.
Now consider the special case. Since f
0
.0/ D f .L/ D 0 and f
00
.x/ D 2, Theorem 11.3.5(d) implies
that
˛
n
D
16L
.2n 1/
2
2
Z
3
0
cos
.2n 1/ x
6
dx
D
288
.2n 1/
3
3
sin
.2n 1/ x
6
ˇ
ˇ
ˇ
ˇ
3
0
D .1/
nC1
288
.2n 1/
3
3
I
C
M
.x/ D
288
3
1
X
nD1
.1/
n
.2n 1/
3
cos
.2n 1/ x
6
I
u.x; y/ D
288
3
1
X
nD1
.1/
n
.2n 1/
3
e
.2n1/y=6
cos
.2n 1/ x
6
:
12.3.32. The boundary conditions require pro ducts v.x; y/ D X.x/Y.y/ such th at (A) X
00
C X D
0, X.0/ D 0, X.a/ D 0, and (B) Y
00
Y D 0, Y
0
.0/ D 1, and Y is boun ded. From Theo-
rem 11.1.2, the eigenvalues of (A) are
n
D
n
2
2
a
2
, with associated eigenfunctions Y
n
D sin
nx
a
,
n D 1, 2, 3,. . . . Substituting D
n
2
2
a
2
into (B) yields Y
00
n
.n
2
2
=a
2
/Y
n
D 0, Y
0
n
.0/ D 1, so
Y
n
D
a
n
e
ny=a
. Then v
n
.x; y/ D X
n
.x/Y
n
.y/ D
a
n
e
ny=a
sin
nx
a
, so
@v
n
@y
.x; 0/ D sin
nx
a
.
Therefore,v
n
is solution of the given problem with f .x/ D sin
nx
a
. Mor e generally, if ˛
1
; : : : ; ˛
m
are
arbitrary constants, then u
m
.x; y/ D
a
m
X
nD1
˛
n
n
e
ny=a
sin
nx
a
is a solution of the given problem
with f .x/ D
m
X
nD1
˛
n
sin
nx
a
. Therefore, if f is an arbitrary piecewise smooth function on Œ0; a we
define the formal solution of the given problem to be u.x; y/ D
a
1
X
nD1
˛
n
n
e
ny=a
sin
nx
a
, where
C.x/ D
1
X
nD1
˛
n
sin
nx
a
is the Fourier sine series of f on Œ0; a; that is, ˛
n
D
2
a
Z
a
0
f .x/ sin
nx
a
dx.
Now consider the special case. Since f .0/ D f ./ D 0 and f
00
.x/ D 2 6x, Theorem 11.3.5(b)
implies that
˛
n
D
2
n
2
Z
0
.2 6x/ sin nx dx D
2
n
3
.2 6x/ cos nx
ˇ
ˇ
ˇ
ˇ
0
C 6
Z
0
cos nx dx
D
4
n
3
Œ1 C .1/
n
2 C
12
n
4
sin nx
ˇ
ˇ
ˇ
ˇ
0
D
4
n
3
Œ1 C .1/
n
2 I
S.x/ D 4
1
X
nD1
Œ1 C .1/
n
2
n
3
sin nx; u.x/ D 4
1
X
nD1
Œ1 C .1/
n
2
n
4
e
ny
sin nx;
Section 12.3
Laplaces Equation in Rectangular Coordinates
269
12.3.34. The boundary conditions require products v.x; y/ D X.x/Y.y/ such that (A) X
00
C X D 0,
X.0/ D 0, X
0
.a/ D 0, and (B) Y
00
Y D 0, Y
0
.0/ D 1, and Y is bounded. From Theorem 11.1.4, the
eigenvalues of (A) are
n
D
.2n 1/
2
2
4a
2
, with associated eigenfunctions Y
n
D sin
.2n 1/x
2a
, n D 1,
2, 3,. . . . Substitut ing D
.2n 1/
2
2
4a
2
into (B) yields Y
00
n
..2n 1/
2
2
=4a
2
/Y
n
D 0, Y
0
n
.0/ D 1, so
Y
n
D
2a
.2n 1/
e
.2n1/y=2a
. Then v
n
.x; y/ D X
n
.x/Y
n
.y/ D
2a
.2n 1/
e
.2n1/y=2a
sin
.2n 1/ x
2a
,
so
@v
n
@y
.x; 0/ D sin
.2n 1/ x
2a
. Therefore,v
n
is solution of the given problem with f .x/ D sin
.2n 1/x
2a
.
More generally, if ˛
1
; : : : ; ˛
m
are arbitrary constants, then u
m
.x; y/ D
2a
m
X
nD1
˛
n
2n 1
e
.2n1/y=2a
sin
.2n 1/ x
2a
is a sol ution of the given p roblem with f .x/ D
m
X
nD1
˛
n
sin
.2n 1/ x
2a
. Therefore, if f is an ar-
bitrary piecewise smooth fu nction on Œ0; a we define the formal solution o f the given prob lem to be
u.x; y/ D
2a
1
X
nD1
˛
n
2n 1
e
.2n1/y=2a
sin
.2n 1/ x
2a
,where S
m
.x/ D
1
X
nD1
˛
n
sin
.2n 1/x
2a
is
the mixed Fourier sine series of f on Œ0; a; that is, ˛
n
D
2
a
Z
a
0
f .x/ sin
.2n 1/ x
2a
.
Now consider the special case.
˛
n
D
2
5
Z
5
0
.5x x
2
/ sin
.2n 1/ x
10
dx
D
4
.2n 1/
"
.5x x
2
/ cos
.2n 1/ x
10
ˇ
ˇ
ˇ
ˇ
5
0
Z
5
0
.5 2x/ cos
.2n 1/ x
10
dx
#
D
40
.2n 1/
2
2
"
.5 2x/ sin
.2n 1/ x
10
ˇ
ˇ
ˇ
ˇ
5
0
C 2
Z
5
0
sin
.2n 1/ x
10
dx
#
D .1/
n
200
.2n 1/
2
2
800
.2n 1/
3
3
cos
.2n 1/ x
10
ˇ
ˇ
ˇ
ˇ
5
0
D .1/
n
200
.2n 1/
2
2
C
800
.2n 1/
3
3
I
S
M
.x/ D
200
2
1
X
nD1
1
.2n 1/
2
.1/
n
C
4
.2n 1/
sin
.2n 1/ x
10
I
u.x; y/ D
2000
3
1
X
nD1
1
.2n 1/
3
.1/
n
C
4
.2n 1/
e
.2n1/y=10
sin
.2n 1/x
10
:
12.3.36. Solving BVP.1; 1; 1; 1/.f
0
; 0; 0; 0/ requires products X.x/Y.y/ such that
X
00
C X D 0; X
0
.0/ D 0; X
0
.a/ D 0I Y
00
Y D 0; Y
0
.b/ D 0; Y
0
.0/ D 1:
Hence, X
n
D cos
nx
a
, Y
n
D
a cosh n.y b/=a
n sinh nb=a
, and c
1
a
1
X
nD1
A
n
cosh n.y b/=a
n sinh nb=a
cos
nx
a
is
270 Chapter 12
Fourier Solut ions of Partial Di fferential Equation s
a formal solution of BVP.1; 1; 1; 1/.f
0
; 0; 0; 0/ if c
1
is any constant and
1
X
nD1
A
n
cos
nx
a
is the Fourier
cosine expansion of f
0
on Œ0; a, which is possible if and o nly if
Z
a
0
f
0
.x/ dx D 0.
Similarly, c
2
C
a
1
X
nD1
B
n
cosh ny=a
n sinh nb=a
cos
nx
a
is a formal solution of BVP.1; 1; 1; 1/.0; f
1
; 0; 0/ if
c
2
is any constant and
1
X
nD1
B
n
cos
nx
a
is the Fourier cosine exp ansion of f
1
on Œ0; a, w hich is possible
if and only if
Z
a
0
f
1
.x/ dx D 0.
Interchanging x and y and a and b shows that c
3
b
1
X
nD1
C
n
cosh n.x a/=b
n sinh na=b
cos
ny
b
is a formal so-
lution of BVP.1; 1; 1; 1/.0; 0; g
0
; 0/ i f c
3
is any constant and
1
X
nD1
C
n
cos
ny
b
is the Fourier cosine expan-
sion of g
0
on Œ0; b, which is possible if an d only if
Z
b
0
g
0
.x/ dx D 0, and c
4
C
b
1
X
nD1
D
n
cosh nx=b
n sinh na=b
cos
ny
b
is a formal solu tion of BVP.1; 1; 1; 1/.0; 0; 0; g
1
/ if c
4
is any constant and
1
X
nD1
D
n
cos
ny
b
is the Fourier
cosine expansion of g
1
on Œ0; b, w hich is possible if and only if
Z
b
0
g
1
.x/ dx D 0.
Adding the four solutions yields
u.x; y/ D C C
a
1
X
nD1
B
n
cosh ny=a A
n
cosh n.y b/=a
n sinh nb=a
cos
nx
a
C
b
1
X
nD1
D
n
cosh nx=b C
n
cosh n.x a/=b
n sinh n a=b
cos
ny
b
;
where C is an arbitr ary constant.
12.4 LAPLACE’S EQUATION IN POLAR COORDINATES
12.4.2. v.r; / D R.r/‚. / where (A) r
2
R
00
C rR
0
R D 0 and
00
C ‚ D 0, ‚.0/ D 0,
‚./ D 0. From Theorem 11.1.2,
n
D
n
2
2
2
,
n
D sin
n
, n D 1, 2, 3,. . . . Substituting D
n
2
2
2
into (A) yields the Euler equation r
2
R
00
n
C rR
0
n
n
2
2
2
R
n
D 0 for R
n
. The indicial polynomial is
s
n
s C
n
, so R
n
D c
1
r
n=
C c
2
r
n=
, by Theorem 7.4.3. We want R
n
./ D 1 and
R
n
.
0
/ D 0, so R
n
.r/ D
n=
0
r
n=
n=
0
r
n=
n=
0
n=
n=
0
n=
;
v
n
.r; / D
n=
0
r
n=
n=
0
r
n=
n=
0
n=
n=
0
n=
sin
n
I
Section 12.4
Laplaces Equation in Polar Co ordinates
271
u.r; / D
1
X
nD1
˛
n
n=
0
r
n=
n=
0
r
n=
n=
0
n=
n=
0
n=
sin
n
, where S./ D
1
X
nD1
n
sin
n
is the Fourier
sine series if f on Œ0; ; that is, ˛
n
D
1
Z
0
f ./ sin
n
d, n D 1, 2, 3,. . . .
12.4.4. v.r; / D R.r/‚./ where (A) r
2
R
00
CrR
0
R D 0 and
00
C‚ D 0,
0
.0/ D 0, ‚./ D 0.
From Theorem 11.1.5,
n
D
.2n 1/
2
2
4
2
,
n
D cos
.2n 1/
2
, n D 1, 2, 3,. . . . Substitut ing
D
.2n 1/
2
2
4
2
into (A) yields the Euler equation r
2
R
00
n
C rR
0
n
.2n 1/
2
2
4
2
R
n
D 0 for R
n
. The
indicial polynomial is
s
.2n 1/
2
s C
.2n 1/
2
, so R
n
D c
1
r
.2n1/=2
C c
2
r
.2n1/=2
,
by Theorem 7.4.3. We want R
n
to be bou nded as r ! 0C and R
n
./ D 1, so we take R
n
.r/ D
r
.2n1/=2
.2n1/=2
; v
n
.r; / D
r
.2n1/=2
.2n1/=2
cos
.2n 1/
2
; u.r; / D
1
X
nD1
˛
n
r
.2n1/=2
.2n1/=2
cos
.2n 1/
2
,
where C
M
./ D
1
X
nD1
˛
n
cos
.2n 1/
2
is the mixed Fourier cosine series of f on Œ0; ; that is, ˛
n
D
2
Z
0
f ./ cos
.2n 1/
2
d, n D 1, 2, 3,. . . .
12.4.6. v.r; / D R.r/‚./ where (A) r
2
R
00
CrR
0
R D 0 and
00
C‚ D 0,
0
.0/ D 0,
0
./ D 0.
From Theorem 11.1.3,
0
D 0,
0
D 1;
n
D
n
2
2
2
,
n
D cos
n
, n D 1, 2, 3,. . . . Substituting
D 0 into (A) yields the equation r
2
R
00
0
C rR
0
0
D 0 for R
0
; R
0
D c
1
C c
2
ln r . Since we want R
0
to be
bounded as r ! 0C and R
0
./ D 1, R
0
.r/ D 1; therefore v
0
.r; / D 1.
Substituting D
n
2
2
2
into (A) yields the Euler equation r
2
R
00
n
C rR
0
n
n
2
2
2
R
n
D 0 for R
n
. The
indicial polynomial is
s
n
s C
n
, so R
n
D c
1
r
n=
C c
2
r
n=
, by Theorem 7.4.3. Since
we want R
n
to be bounded as r ! 0C and R
n
./ D 1, R
n
.r/ D
r
n=
n=
; v
n
.r; / D
r
n=
n=
cos
n
,
n D 1, 2, 3,. . . ; u.r; / D ˛
0
C
1
X
nD1
˛
n
r
n=
n=
cos
n
, where F ./ D ˛
0
C
1
X
nD1
˛
n
cos
n
is the
Fourier cosine series of f on Œ0; ; that is, ˛
0
D
1
Z
0
f ./ d and ˛
n
D
2
Z
0
f ./ cos
n
d,
n D 1, 2, 3,. . . .
CHAPTER 1 3
Boundary Value Problems for Second
Order Ordinary Differential Equations
13.1 BOUNDARY VALUE PROBLEMS
13.1.2. By inspection, y
p
D x; y D x C c
1
e
x
C c
2
e
x
; y.0/ D 2 H) c
1
C c
2
D 2;
y.1/ D 1 H) 1 C c
1
e C c
2
=e D 1;
1 1
e 1=e
c
1
c
2
D
2
2
; c
1
D
2
e 1
; c
2
D
2e
1 e
;
y D x C
2
e
x
e
.x1/
e 1
13.1.4. By i nspection, y
p
D x; y D x C c
1
e
x
C c
2
e
x
; y
0
D 1 C c
1
e
x
c
2
e
x
; y.0/ C y
0
.0/ D
3 H) 1 C 2c
1
D 3; c
1
D 2; y.1/ y
0
.1/ D 2 H)
2c
2
e
D 2; c
2
D e; y D x C 2e
x
C e
.x1/
13.1.6. y
p
D Ax
2
e
x
; y
0
p
D A.x
2
C2xe
x
/; y
00
p
D A.x
2
e
x
C4xe
x
C2e
x
/; y
00
p
2y
0
p
Cy
p
D 2Ae
x
D e
x
if A D 1; y
p
D x
2
e
x
; y D .x
2
C c
1
C c
2
x/e
x
; y
0
D .x
2
C 2x C c
1
C c
2
C c
2
x/e
x
; B
1
.y/ D 3 and
B
2
.y/ D 6e H) c
1
2c
2
D 3, 2c
1
C 3c
2
D 24; c
1
D 13; c
2
D 8; y D .x
2
8x C 13/e
x
.
13.1.8. B
1
.y/ D y.0/; B
2
.y/ D y.1/ y
0
.1/. Let y
1
D x, y
2
D 1; B
1
.y
1
/ D B
2
.y
1
/ D 0. By
variation of parameters, if y
p
D u
1
x C u
2
where u
0
1
x C u
0
2
D 0 and u
0
1
D F , then y
00
p
D F .x/. Let
u
0
1
D F , u
0
2
D xF ; u
1
D
Z
1
x
F .t/ dt, u
2
D
Z
x
0
tF.t/ dt; y
p
D x
Z
1
x
F .t/ dt
Z
x
0
tF.t/ dt;
y
0
p
D
Z
1
x
F .t/ dt; y D y
p
C c
1
x C c
2
. Since B
1
.y
p
/ D 0, B
1
.x/ D 0 and B
1
.1/ D 1, B
1
.y/ D
0 H) c
2
D 0; hence, y D y
p
Cc
1
x. Since B
2
.y
p
/ D
Z
1
0
tF.t/ dt and B
2
.x/ D 0, B
2
.y/ D 0 H)
Z
1
0
tF.t/ dt D 0: There is no solution if this conditions does not hold. If it does hold, then the solutions
are y D y
p
C c
1
x, with c
1
arbitrary.
13.1.10. (a) The condition is ba ¤ .kC1=2/ (k D integer). Let y
1
D sin.xa/ and y
2
D cos.xb/.
Then y
1
.a/ D y
0
2
.b/ D 0 and fy
1
; y
2
g is linearly independent if b a ¤ .k C 1=2/ (k D integer),
since
ˇ
ˇ
ˇ
ˇ
sin.x a/ cos.x b/
cos.x a/ sin.x b/
ˇ
ˇ
ˇ
ˇ
D cos.b a/ ¤ 0:
273
274 Chapter 13
Boun dary Value Problems for Second Order Ordinary Differential Equati ons
Now Theorem 13.1.2 implies that (A) has a unique solution for any continuous F and constants k
1
and
k
2
. If y D u
1
sin.x a/ C u
2
cos.x b/ where
u
0
1
sin.x a/ C u
0
2
cos.x b/ D 0
u
0
1
cos.x a/ u
0
2
sin.x b/ D F;
then y
00
C y D F .
u
0
1
D F.x/
cos.x b/
cos.b a/
; u
0
2
D F .x/
sin.x a/
cos.b a/
;
u
1
D
1
cos.b a/
Z
b
x
F .t/ cos.t b/ dt; u
2
D
1
cos.b a/
Z
x
a
F .t/ sin.t b/ dt I
y D
sin.x a/
cos.b a/
Z
b
x
F .t/ cos.t b/ dt
cos.x b/
cos.b a/
Z
x
a
F .t/ sin.t a/ dt:
(b) If b a D .k C 1=2/ (k D integer), then y
1
D sin.x a/ satisfies both boundary conditions
y.a/ D 0 and y
0
.b/ D 0. Let y
2
D cos.x a/. If y
p
D u
1
sin.x a/ C u
2
cos.x/ where
u
0
1
sin.x a/ C u
0
2
cos.x a/ D 0;
u
0
1
cos.x a/ u
0
2
sin.x a/ D F;
then y
00
p
C y
p
D F ; u
0
1
D F cos.x a/; u
0
2
D F sin.x a/;
u
1
D
Z
b
x
F .t/ cos.t a/ dt; u
2
D
Z
x
a
F .t/ sin.t a/ dtI
y
p
D sin.x a/
Z
b
x
F .t/ cos.t a/ dt cos.x a/
Z
x
a
F .t/ sin.t a/ dtI
y
0
p
D cos.x a/
Z
b
x
F .t/ cos.t a/ dt C sin.x a/
Z
x
a
F .t/ sin.t a/ dt:
The general solution of y
00
Cy D F is y D y
p
Cc
1
sin.xa/Cc
2
cos.xa/. Since b a D .kC1=2/,
y
0
.b/ D 0 H) y
0
p
.b/ D .1/
k
Z
b
a
F .t/ sin.t a/ dt D 0; ther efore, F must satisfy
Z
b
a
F .t/ sin.t
a/ dt D 0. In this case, the solutions of the boundary value problem ar e y D y
p
Cc
1
sin.x a/, with c
1
arbitrary.
13.1.12. Let y
1
D sinh.x a/ and y
2
D sinh.x b/. Then y
1
.a/ D 0, y
2
.b/ D 0, and
W.x/ D
ˇ
ˇ
ˇ
ˇ
sinh.x a/ sinh.x b/
cosh.x a/ cosh.x b/
ˇ
ˇ
ˇ
ˇ
D sinh.b a/ ¤ 0:
(Since W is constant (Theorem 5.1.4), evaluate it by setting x D b.) From Theorem 13.1.2, (A) has a
unique solution for any continuous F and constants k
1
and k
2
. If y D u
1
sinh.x a/ C u
2
sinh.x b/
where
u
0
1
sinh.x a/ C u
0
2
sinh.x b/ D 0
u
0
1
cosh.x a/ C u
0
2
cosh.x b/ D F;
then y
00
y D F .
u
0
1
D F.x/
sinh.x b/
sinh.b a/
; u
0
2
D F .x/
sinh.x a/
sinh.b a/
;
Section 13.1
Boun dary Value Problems
275
u
1
D
1
sinh.b a/
Z
b
x
F .t/ sinh.t b/ dt; u
2
D
1
sinh.b a/
Z
x
a
F .t/ sinh.t a/ dtI
y D
sinh.x a/
sinh.b a/
Z
b
x
F .t/ sinh.t b/ dt C
sinh.x b/
sinh.b a/
Z
x
a
F .t/ sinh.t a/ dt:
13.1.14. Let y
1
D cosh.x a/ and y
2
D cosh.x b/. Then y
0
1
.a/ D y
0
2
.b/ D 0 and
W.x/ D
ˇ
ˇ
ˇ
ˇ
cosh.x a/ cosh.x b/
sinh.x a/ sinh.x b/
ˇ
ˇ
ˇ
ˇ
D sinh.b a/ ¤ 0:
(Since W is constant (Theorem 5.1.40, evaluate it by setting x D b.) If
y D u
1
cosh.x a/ C u
2
cosh.x b/ where
u
0
1
cosh.x a/ C u
0
2
cosh.x b/ D 0
u
0
1
sinh.x a/ C u
0
2
sinh.x b/ D F;
then y
00
y D F .
u
0
1
D F.x/
cosh.x b/
sinh.b a/
; u
0
2
D F .x/
cosh.x a/
sinh.b a/
;
u
1
D
1
sinh.b a/
Z
b
x
F .t/ cosh.t b/ dt; u
2
D
1
sinh.b a/
Z
x
a
F .t/ cosh.t a/ dtI
y D
cosh.x a/
sinh.b a/
Z
b
x
F .t/ cosh.t b/ dt
cosh.x b/
sinh.b a/
Z
x
a
F .t/ cosh.t a/ dt:
13.1.16. Let y
1
D sin !x, y
2
sin !.x /; then y
1
.0/ D 0, y
2
./ D 0,
W.x/ D
ˇ
ˇ
ˇ
ˇ
sin !x sin !.x /
! cos !x ! cos !.x /
ˇ
ˇ
ˇ
ˇ
D ! sin ! ¤ 0
if and only if ! is not an integer. If this is so, then y D u
1
sin !x C u
2
sin !.x / if
u
0
1
sin !x C u
0
2
sin !.x / D 0
!.u
0
1
cos !x C u
0
2
cos !.x // D F I
u
0
1
D F
sin !.x /
! sin !
; u
0
2
D F
sin !x
! sin !
I
u
1
D
1
! sin !
Z
x
F .t/ sin !.t / dtI u
2
D
1
! sin !
Z
x
0
F .t/ sin !t dtI
y D
1
! sin !
sin !x
Z
x
F .t/ sin !.t / dt C sin !.x /
Z
0
F .t/ sin !t dt
:
If ! D n (positive integer ), then y
1
D sin nx i s a nontrivial solution o f y
00
Cy D 0, y.0/ D 0, y./ D
0. Let y
2
D cos nx; then W.x/ D
ˇ
ˇ
ˇ
ˇ
sin nx cos nx
n cos nx n sin nx
ˇ
ˇ
ˇ
ˇ
D n, and y
p
D u
1
sin nx C u
2
cos nx
satisfies y
00
p
C n
2
y
p
D 0 if
u
0
1
sin nx C u
0
2
cos nx D 0
nu
0
1
cos nx nu
0
2
sin nx D F I
276 Chapter 13
Boun dary Value Problems for Second Order Ordinary Differential Equati ons
u
0
1
D
1
n
F cos nx, u
0
2
D
1
n
F sin nx; u
1
D
1
n
Z
x
F .t/ cos nt dt ; u
2
D
1
n
Z
x
0
F .t/ sin nt dt;
y
p
D
1
n
sin nx
Z
x
F .t/ cos nt dt C cos nx
Z
x
0
F .t/ sin nt dt
I
y D y
p
C c
1
sin nx C c
2
cos nx. Since y
p
D 0, y.0/ D 0, so c
2
D 0; y D y
p
C c
1
sin nx. Since
y./ D 0,
Z
0
F .t/ sin nt dt D 0 is necessary for existence of a solution. I f this hold, then the solut ions
are y D y
p
C c
1
sin nx, with c
1
arbitrary.
13.1.18. Let y
1
D cos !x; y
2
D sin !.x /; t hen y
0
1
.0/ D y
2
./ D 0, and
W.x/ D
ˇ
ˇ
ˇ
ˇ
cos !x sin !.x /
! sin !x ! cos !.x /
ˇ
ˇ
ˇ
ˇ
D ! cos ! ¤ 0
if and only if ! ¤ n C 1=2 (n D integer). If this is so, then y D u
1
cos !x C u
2
sin !.x / satisfies
y
00
C!
2
y D F .x/ if
u
0
1
cos !x C u
0
2
sin !.x / D 0
!.u
0
1
sin !x Cu
0
2
cos !.x //! D F I
then
u
0
1
D
F sin !.x /
! cos !
; u
0
2
D
F cos !x
! cos !
;
u
1
D
1
! cos !
Z
x
F .t/ sin !.t /; dt; u
2
D
1
! cos !
Z
x
0
F .t/ cos !t dt;
y D
1
! cos !
sin !x
Z
x
F .t/ sin !.t /; dt C sin !.x /
Z
x
0
F .t/ cos !t dt
:
If ! D n C 1=2 (n D integer), then y
1
D cos.n C 1=2/x is a nontrivial solution y
00
C y D 0,
y
0
.0/ D y./ D 0. Let y
2
D sin.n C 1=2/x; then
W.x/ D
ˇ
ˇ
ˇ
ˇ
cos.n C 1=2/x sin.n C1=2/x
.n C 1=2/ sin.n C 1=2/x .n C 1=2/ cos.n C 1=2/x
ˇ
ˇ
ˇ
ˇ
D n C 1=2;
so y
p
D u
1
cos.n C 1=2/x C u
2
sin.n C 1=2/x satisfies y
00
p
C .n C 1=2/
2
y
p
D F if
u
0
1
cos.n C 1=2/x C u
0
2
sin.n C 1=2/x D 0
.n C 1=2/u
0
1
sin.n C 1=2/x C .n C 1=2/u
0
2
cos.n C 1=2/x D F:
u
0
1
D
F sin.n C 1=2/x
n C 1=2
I u
0
2
D
F cos.n C 1=2/x
n C 1=2
I
u
1
D
Z
x
F .t/ sin.n C 1=2/t
n C 1=2
dtI u
2
D
Z
x
0
F .t/ cos.n C 1=2/t
n C 1=2
dtI
y
p
D
1
n C 1=2
cos.n C 1=2/x
Z
x
F .t/ sin.n C 1=2/t dt C sin .n C 1=2/x
Z
x
0
F .t/ cos.n C 1=2/t dt
I
y
0
p
D sin.n C 1=2/x
Z
x
F .t/ sin.n C 1=2/t dt C cos.n C 1=2/x
Z
x
0
F .t/ cos.n C 1=2/t dtI
Section 13.1
Boun dary Value Problems
277
y D y
p
C c
1
cos.n C 1=2/x C c
2
sin.n C 1=2/xI
y
0
D y
0
p
C .n C 1=2/.c
1
sin.n C 1=2/x C c
2
cos.n C 1=2//x:
Since y
0
p
.0/ D 0, y
0
.0/ D 0 H) c
2
D 0; y D y
p
C c
1
cos.n C 1=2/x;
y
0
D y
0
p
C.nC1=2/c
1
.nC1=2/x; y./ D 0 H) y
p
./ D 0. Hence,
Z
0
F .y/ cos.nC1=2/t dt D 0
is a necessary condition for existence of a solution. If th is holds, then the so lutions are y D y
p
C
c
1
cos.n C 1=2/x with c
1
arbitrary.
13.1.20. Suppose y D c
1
´
1
C c
2
´
2
is a nontrivial solution of the homogeneo us boundary value prob-
lem. Then B
1
.y/ D c
1
B
1
1
/ C c
2
B
1
2
/ D 0. From Theorem 13.1.1 we may assume without
loss of generality that B
1
2
/ ¤ 0. Then c
2
D
B
1
1
/
B
1
2
/
c
1
. Therefore, y is constant mul tiple of
y
0
D B
1
2
1
B
1
1
2
¤ 0. To that check y satisfies the boun dary conditions, note that B
1
.y
0
/ D
B
1
2
/B
1
1
/B
1
1
/B
1
2
/ D 0 B
2
.y
0
/ D B
1
2
/B
2
1
/B
1
1
/B
2
2
/ D 0, by Theorem 13.1.2.
13.1.22. y
1
D a
1
Ca
2
x; y
1
.0/2y
0
1
.0/ D a
1
2a
2
D 0 if a
1
D 2, a
2
D 1; y
1
D 2Cx. y
2
D b
1
Cb
2
x;
y
2
.1/ D 2y
0
1
.1/ D b
1
C 3b
2
D 0 if b
1
D 3, b
2
D 1; y
2
D 3 x.
W.x/ D
ˇ
ˇ
ˇ
ˇ
2 C x 3 x
1 1
ˇ
ˇ
ˇ
ˇ
D 5I G.x; t / D
8
ˆ
ˆ
<
ˆ
ˆ
:
.2 C t/.3 x/
5
; 0 t x;
.2 C x/.3 t/
5
; x t 1:
y D
1
5
.2 C x/
Z
1
x
.3 t/F .t/ dt C .3 x/
Z
x
0
.2 C t/F .t/ dt
: (B)
(a) With F.x/ D 1, (B) becomes
y D
1
5
.2 C x/
Z
1
x
.3 t/ dt C .3 x/
Z
x
0
.2 C t/ dt
D
1
5
.2 C x/
x
2
6x C 5
2
C .3 x/
x
2
C 4x
2

D
x
2
x 2
2
:
(b) With F .x/ D x, (B ) becomes
y D
1
5
.2 C x/
Z
1
x
.3t t
2
/ dt C .3 x/
Z
x
0
.2t C t
2
/ dt
D
1
5
.2 C x/
2x
3
9x
2
C 7
6
C .3 x/
x
3
C 3x
2
3

D
5x
3
7x 14
30
:
(b) With F .x/ D x
2
, (B) becomes
y D
1
5
.2 C x/
Z
1
x
.3t
2
t
3
/ dt C .3 x/
Z
x
0
.2t
2
C t
3
/ dt
D
1
5
.2 C x/
x
4
4x
2
C 3
4
C .3 x/
3x
4
C 8x
3
12

D
5x
4
9x 18
60
:
278 Chapter 13
Boun dary Value Problems for Second Order Ordinary Differential Equati ons
13.1.24. y
1
D x
2
x, y
2
D x
2
2x; th en y
1
.1/ D 0, y
2
.2/ D 0; W .x/ D
ˇ
ˇ
ˇ
ˇ
x
2
x x
2
2x
2x 1 2x 2
ˇ
ˇ
ˇ
ˇ
D x
2
.
Since P
0
.x/ D x
2
, G.x; t/ D
8
ˆ
ˆ
<
ˆ
ˆ
:
.t 1/x.x 2/
t
3
; 1 t x;
x.x 1/.t 2/
t
3
; x t 2:
:
y D x.x 1/
Z
2
x
t 2
t
3
F .t/ dt C x.x 2/
Z
x
1
F .t/ dt: (B)
(a) With F.x/ D 2x
3
, (B) becomes
y D 2x.x 1/
Z
2
x
.t 2/ dt C 2x.x 2/
Z
x
1
.t 1/ dt
D x.x 1/.x 2/
2
C x.x 2/.x 1/
2
D x.x 1/.x 2/:
(b) With F .x/ D 6x
4
, (B) becomes
y D 6x.x 1/
Z
2
x
.t 2/t dt C 6x.x 2/
Z
x
1
.t 1/t dt
D 2x.x 1/.x C 1/.x 2/
2
C x.x 2/.x 1/
2
.2x C 1/ D x.x 1/.x 2/.x C 3/:
13.1.26. y
1
D a
1
C a
2
x; y
0
1
D a
2
; B
1
.y
1
/ D ˛a
1
C ˇa
2
D 0 if a
1
D ˇ, a
2
D ˛; y
1
D ˇ ˛x.
y
2
D b
1
C b
2
x; y
0
2
D b
2
; B
2
.y
2
/ D b
1
C . C ı/b
2
D 0 if b
1
D C ı, b
2
D ; y
2
D C ı x;
W.x/ D
ˇ ˛x C ı x
˛
D ˛. C ı/ ˇ. From Theorem 13.1.2, (A ) has a unique so lution
if and only if ˛. C ı/ ˇ ¤ 0. Then
G.x; t / D
8
ˆ
ˆ
<
ˆ
ˆ
:
˛t/. Cı x/
˛. C ı/ ˇ
; 0 t x;
˛x/. C ı t/
˛. C ı/ ˇ
; x t 1:
13.1.28. y
1
D a
1
cos x Ca
2
sin x; y
0
1
D a
1
sin x Ca
2
cos x; B
1
.y
1
/ D ˛a
1
Cˇa
2
D 0 if a
1
D ˇ, a
2
D
˛. y
1
D ˇ cos x ˛ sin x. y
2
D b
1
cos x Cb
2
sin x; y
0
2
D b
1
sin x Cb
2
cos x; B
2
.y
2
/ D b
2
ıb
1
D
0 if b
1
D , b
2
D ı; y
2
D cos x Cı sin x; W.x/ D
ˇ cos x ˛ sin x cos x C ı sin x
ˇ sin x ˛ cos x sin x C ı cos x
Since
W is constant, we can evaluate it with x D 0: W D
ˇ
˛ ı
D ˛ Cˇı. From Theorem 13.1.2, (A)
has a unique solution if and only if ˛ C ˇı ¤ 0. Then
G.x; t / D
8
ˆ
ˆ
<
ˆ
ˆ
:
cos t ˛ sin t/. cos x C ı sin x/
˛ C ˇı
; 0 t x;
cos x ˛ sin x/. cos t C ı sin t//
˛ C ˇı
; x t :
13.1.30. y
1
D e
x
.a
1
cos x C a
2
sin x/; y
0
1
D e
x
Œa
1
.cos x sin x/ C a
2
.sin x C cos x/;
B
1
.y
1
/ D C ˇ/a
1
C ˇa
2
D 0 if a
1
D ˇ, a
2
D C ˇ/.
Section 13.2
Sturm-Liouville Problems
279
y
1
D e
x
cos x C ˇ/ sin x. y
2
D e
x
.b
1
cos x C b
2
sin x/;
y
0
2
D e
x
Œ.b
1
.cos x sin x// C b
2
.sin x C cos x/;
B
2
.y
2
/ D e
=2
Œ. Cı/b
2
ıb
1
D 0 if b
1
D ı, b
2
D . C ı/;
y
2
D e
x
Œ. C ı/ cos x C ı sin x/;
To evaluate W.x/, we write y
1
D e
x
v
1
and y
2
D e
x
v
2
, where
v
1
D ˇ cos x C ˇ/ sin x and v
2
D . C ı/ cos x C ı sin x.
Then y
0
1
D y
1
C e
x
v
0
1
and y
2
D y
2
C e
x
y
0
2
,
W.x/ D
ˇ
ˇ
ˇ
ˇ
y
1
y
2
y
1
C e
x
v
0
1
y
2
C e
x
v
0
2
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
y
1
y
2
e
x
v
0
1
xv
0
2
ˇ
ˇ
ˇ
ˇ
D e
2x
ˇ
ˇ
ˇ
ˇ
v
1
v
2
v
0
1
xv
0
2
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
cos x C ˇ/ sin x . C ı/ cos x C ı sin x
.ˇ sin x C ˇ/ cos x .. C ı/ sin x C ı cos x
ˇ
ˇ
ˇ
ˇ
:
Since v
00
i
C v
i
D 0, i D 1, 2, Theorem 5.1.4 implies that W .x/ D Ke
2x
, where is a constant that can be
determined by setting x D 0 in the determinant :
W.x/e
2x
ˇ
ˇ
ˇ
ˇ
ˇ C ı
˛ ˇ ı
ˇ
ˇ
ˇ
ˇ
D Œˇı C C ˇ/. C ı/:
From Theorem 13.1.2, the bo undary value problem has a unique solution if and only if ˇı C Cˇ/. C
ı/ ¤ 0. In this case the Green’s function is
G.x; t / D
8
ˆ
ˆ
<
ˆ
ˆ
:
e
xt
Œˇ cos t C ˇ/ sin tŒ C ı/ cos x C ı sin x
ˇı C C ˇ/. C ı/
; a t x
e
xt
Œˇ cos x C ˇ/ sin xŒ C ı/ cos t C ı sin t
ˇı C C ˇ/. C ı/
; x t =2:
13.1.32. Let y
p
D
Z
b
a
G.x; t /F.t/ dt. From Theorem 13.1.3, Ly
p
D F , B
1
.y
p
/ D 0, and B
2
.y
p
/ D 0.
The so lution of Ly D F , B
1
.y/ D k
1
, and B
2
.y/ D k
2
is of the form y D y
p
C c
1
y
1
C c
2
y
2
. Since
B
1
.y
p
/ D 0 and B
1
.y
1
/ D 0, B
1
.y/ D k
1
H) k
1
D c
2
B
1
.y
2
/ H) c
2
D
k
1
B
1
.y
2
/
. Since
B
2
.y
p
/ D 0 and B
2
.y
2
/ D 0, B
2
.y/ D k
2
H) k
2
D c
1
B
2
.y
1
/ H) c
1
D
k
2
B
2
.y
1
/
.
13.2 STURM-LIOUVILLE PROBLEMS
13.2.2. y
00
C
1
x
y
0
C
1
2
x
2
y D 0;
p
0
p
D
1
x
; ln jpj D ln jxj; p D x; xy
00
C y
0
D
x
2
x
y D 0;
.xy
0
/
0
C
x
2
x
y D 0.
13.2.4. y
00
C
b
x
y
0
C
c
x
2
y D 0;
p
0
p
D
b
x
; ln jpj D b ln jxj; p D x
b
;
x
b
y
00
C bx
b1
y
0
C cx
b2
y D 0; .x
b
y
0
/
0
C cx
b2
y D 0.
13.2.6. xy
00
C .1 x/y
0
C ˛y D 0; y
00
C
1
x
1
y
0
C
˛
x
y D 0;
p
0
p
D
1
x
1; ln jpj D l n jxj x;
p D xe
x
; xe
x
y
00
C .1 x/y
0
C ˛e
x
y D 0; .xe
x
y
0
/
0
C ˛e
x
y D 0.
280 Chapter 13
Boun dary Value Problems for Second Order Ordinary Differential Equati ons
13.2.8. If is an eigenvalues of (A) and y is a -eigenfunction, multiplying the differential equation in
(B) by y yields .xy
0
/y C
x
y
2
D 0;
Z
2
1
y
2
.x/
x
2
dx D
Z
2
1
.xy
0
.x//
0
y.x/ dx D xy
0
.x/y.x/
ˇ
ˇ
ˇ
ˇ
2
1
C
Z
2
1
x.y
0
.x//
2
dxI
y.1/ D y
.
2/ D 0 H) xy
0
.x/y.x/
ˇ
ˇ
ˇ
ˇ
2
1
D 0I
Z
2
1
y
2
.x/
x
dx D
Z
2
1
x.y
0
.x//
2
dx:
Therefore 0: We must still show that D 0 is not an eigenvalue. To th is end , suppose th at .xy
0
/
0
D 0;
then xy
0
D c
1
; y
0
D
c
1
x
; y D c
1
ln jxj C c
2
; y.1/ D 0 H) c
2
D 0; y D c
1
ln jxj; y.2/ D 0 H)
c
1
D 0; y 0; therefore D 0 is not an eigenvalue.
13.2.10. Characteristic equation: r
2
C 2r C 1 C D 0; r D 1 ˙
p
.
D 0: y D e
x
.c
1
C c
2
x/; y
0
D e
x
.c
1
c
2
C c
2
x/; y
0
.0/ D 0 H) c
1
D c
2
; y
0
D c
2
xe
x
;
y
0
.1/ D 0 H) c
2
=e D 0 H) c
2
D 0; D 0 is not an eigenvalue.
D k
2
, k > 0: r D 1 ˙ k; y D e
x
.c
1
cosh kx C c
2
sinh kx/;
y
0
D c
1
e
x
.cosh kx C k sinh kx/ C c
2
e
x
.sinh kx C k cosh kx/.
The boundary conditions require th at
c
1
C c
2
k D 0 and .cosh k C k sinh k/c
1
C.sinh k C k cosh k/c
2
D 0.
This system has a nontrivial solution if and only if .1 k
2
/ sinh k D 0. Let k D 1 and c
1
D c
2
D 1; then
D 1 is the only negative eigenvalue, with associated eigenfunction y D 1.
D k
2
, k > 0: r D 1 ˙ ik; y D e
x
.c
1
cos kx C c
2
sin kx/;
y
0
D c
1
e
x
.cos kx k sin kx/ Cc
2
e
x
.sin x C k cos kx/. The boundary condit ions require that
c
1
C c
2
k D 0 and .cos k k sin k/c
1
C .sin k C k cos k/c
2
D 0.
This system has a nontrivial solution if and only if .1 C k
2
/ sin k D 0. Let k D n (k a p ositive
integer)and c
1
D n, c
2
D 1; then
n
D n
2
2
is an eigenvalue, with associated eigenfunction y
n
D
e
x
.n cos nx C sin nx/.
13.2.12. Characteristic equation: r
2
C D 0.
D 0 W y D c
1
C c
2
x. y.0/ D 0 H) c
1
D 0, so y D c
2
x. Now y.1/ 2y
0
.1/ D 0 H) c
2
D 0.
Therefore D 0 is not an eigenvalue.
D k
2
, k > 0: y D c
1
cosh kx Cc
2
sinh kx; y
0
D k.c
1
sinh kx Cc
2
cosh kx/. y
0
.0/ H) c
2
D 0,
so y D c
1
cosh kx. Now y.1/ 2y
0
.1/ D 0 H) c
1
.cosh k 2k sinh k/ D 0, which is possible with
c
1
¤ 0 if and only i f tanh k D
1
2k
. Graphing both sides of this equation on the same axes show that it
has on e positive solution k
0
; y
0
D cosh k
0
x is a k
2
0
-eigefunction.
D k
2
, k > 0: y D c
1
cos kx C c
2
sin kx; y
0
D k.c
1
sin kx C c
2
cos kx/. y
0
.0/ H) c
2
D 0, so
y D c
1
cos kx. Now y.1/ 2y
0
.1/ D 0 H) c
1
.cos k C 2k sin k/ D 0, which is possib le with c
1
¤ 0
if and only if tan k D
1
2k
. Graphing both sides of this equation on the same axes shows that it has a
solution k
n
in ..2n 1/=2; n/, n D 1, 2, 3, . . . ; y
n
D cos k
n
x is a k
2
n
-eigenfunction.
13.2.14. Characteristic equation: r
2
C D 0.
D 0 W y D c
1
C c
2
x. The boundary conditions require that c
1
C 2c
2
D 0 and c
1
C c
2
D 0, which
imply that c
1
D c
2
D 0, so D 0 i s not an eigenvalue.
D k
2
, k > 0: y D c
1
cosh kx C c
2
sinh kx; y
0
D k.c
1
sinh kx C c
2
cosh kx/. The boundary
conditions require that
c
1
C 2kc
2
D 0 and c
1
cosh k C c
2
sinh 2k D 0.
This system has a nontrivial solution if and only if tanh k D 2k. G raphing both sides o f this equation
Section 13.2
Sturm-Liouville Problems
281
on the same axes shows that it has a solution k
0
in .0; /; y
0
D 2k
0
cosh k
0
x sin h k
0
x is a k
2
0
-
eigenfunction.
D k
2
, k > 0: y D c
1
cos kx Cc
2
sin kx; y
0
D k.c
1
sin kx Cc
2
cos kx/. The boundary conditions
require th at
c
1
C 2kc
2
D 0 and c
1
cos k C c
2
sin k D 0.
This system has a nontrivial solution if and only if tan k D 2k. Graphing both sides of this equation on
the same axes shows that it has a solu tion k
n
in .n; n C1=2/, n D 1, 2,3, . . . ; y
n
D 2k
n
cos k
n
x sin k
n
x
is a k
2
n
-eigenfunction.
13.2.16. Characteristic equation: r
2
C D 0.
D 0 W y D c
1
C c
2
x. The bou ndary conditions r equire that c
1
C c
2
D 0 and c
1
C 4c
2
D 0, so
c
1
D c
2
D 0. Therefore D 0 is not an eigenvalue.
D k
2
, k > 0: y D c
1
cosh kx C c
2
sinh kx; y
0
D k.c
1
sinh kx C c
2
cosh kx/. The boundary
conditions require that
c
1
C kc
2
D 0 and .cosh 2k C 2k sinh 2k/c
1
C.sinh 2k C 2k cosh 2k/c
2
D 0.
This system has a nontrivial solution if and only if tanh 2k D
k
1 2k
2
. Graphi ng both sides of this
equation on the same axes shows that it has a solution k
0
in .1=
p
2/; y
0
D k
0
cosh k
0
x sinh k
0
x is a
k
2
0
- eigenfunction.
D k
2
, k > 0: y D c
1
cos kx Cc
2
sin kx; y
0
D k.c
1
sin kx Cc
2
cos kx/. The boundary conditions
require th at
c
1
C kc
2
D 0 and .cos 2k 2k sin 2k/c
1
C .sin 2k C 2k cos 2k/c
2
D 0.
This system has a nontrivial solution if and only if tan 2k D
k
1 C 2k
2
. Graphing b oth sides of this
equation on the same axes shows that it has a solution k
n
in ..2n 1/=4; n=2/, n D 1, 2,3, . . . ;
y
n
D k
n
cos k
n
x sin k
n
x is a k
2
n
-eigenfunction.
13.2.18. Characteristic equation: r
2
C D 0.
D 0 W y D c
1
C c
2
x. The boundary conditions require that 3c
1
C 2c
2
D 0 and 3c
1
C 4c
2
D 0, so
c
1
D c
2
D 0. Therefore D 0 is not an eigenvalue.
D k
2
, k > 0: y D c
1
cosh kx C c
2
sinh kx; y
0
D k.c
1
sinh kx C c
2
cosh kx/. The boundary
conditions require that
3c
1
C kc
2
D 0 and .3 cosh 2k 2k sinh 2k/c
1
C .3 sinh 3k 2k cosh 2k/c
2
D 0.
This system has a nontrivial solution if and only if tanh 2k D
9k
9 C 2k
2
. Graphing both si des of this equa-
tion on t he same axes shows t hat it has so lutions y
1
in .1; 2/ and y
2
in .5=2; 7=2/; y
n
D k
n
cosh k
n
x
3 sin h k
n
x is a k
2
n
-eigenfunction, k D 1, 2.
D k
2
, k > 0: y D c
1
cos kx Cc
2
sin kx; y
0
D k.c
1
sin kx Cc
2
cos kx/. The boundary conditions
require th at
3c
1
C kc
2
D 0 and .3 cos 2k C 2k sin 2k/c
1
C .3 sin 2k 2k cos 2k/c
2
D 0.
This system has a nontrivial solution if and only i f tan 2k D
9k
9 2k
2
. Graphing both sides of this
equation on the same axes shows that it has solutions k
0
in .3=
p
2; / and k
n
in ..2n C 3/=4; .n C
2/=3/, n D 1, 2,3, . . . ; y
n
D k
n
cos k
n
x 3 sin k
n
x is a k
2
n
-eigenfunction.
13.2.20. Characteristic equation: r
2
C D 0.
D 0 W y D c
1
C c
2
x. The bou ndary conditions require th at 5c
1
C 2c
2
D 0 and 5c
1
C 3c
2
, so
c
1
D c
2
D 0. Therefore D 0 is not an eigenvalue.
D k
2
, k > 0: y D c
1
cosh kx C c
2
sinh kx; y
0
D k.c
1
sinh kx C c
2
cosh kx/. The boundary
conditions require that
5c
1
C 2kc
2
D 0 and .5 cosh k 2k sin h k/c
1
C .5 sinh k 2k cosh k/c
2
D 0.
282 Chapter 13
Boun dary Value Problems for Second Order Ordinary Differential Equati ons
This system has a nontrivial solution if and only if tanh k D
20k
25 C 4k
2
. Graphing both sides of this equa-
tion on the same axes shows that it has solutions k
1
in .1; 2/ and k
2
in .5=2; 7=2/; y
n
D 2k
n
cosh k
n
x
sinh k
n
x is k
n
-eigenfunction, n D 1, 2.
D k
2
, k > 0: y D c
1
cos kx Cc
2
sin kx; y
0
D k.c
1
sin kx Cc
2
cos kx/. The boundary conditions
require th at
5c
1
C2kc
2
D 0 and .5 cos k C 2k sin k/c
1
C .5 sin k 2k cos k/c
2
D 0.
This system has a nontrivial solution if and only if tan k D
20k
25 4k
2
. Graphing both sides of this
equation on the same axes shows that it has a solution k
n
in
..2n C 1/=2; .n C 1//, n D 1, 2,3, . . . ; y
n
D 2k
n
cos k
n
x 3 sin k
n
x is a k
2
n
-eigenfunction.
13.2.22. D 0: x
2
y
00
2xy
0
C 2y D 0 is an Euler equation with indicial equation r.r 1/ 2r C2 D
.r1/.r2/ D 0. y D x.c
1
Cc
2
x/; y.1/ D y.2/ D 0 H) c
1
Cc
2
D c
1
C2c
2
D 0 H) c
1
D c
2
D 0,
so D 0 is not an eigenvalue.
D k
2
; k > 0: y D x.c
1
cosh k.x 1/ C c
2
sinh k.x 1//; y.1/ D 0 H) c
1
D 0; y D
c
2
x sin h k.x 1/; y.2/ D 0 H) 2c
2
sinh k D 0 H) c
2
D 0; is not an eigenvalue.
D k
2
; k > 0: y D x.c
1
cos k.x1/Cc
2
sin k.x1//; y.1/ D 0 H) c
1
D 0; y D c
2
x sin k.x1/;
y.2/ D 0 wi th c
2
¤ 0 if k D n (n a positive integer);
n
D n
2
2
; y
n
D x sin n.x 1/ is a k
2
n
-
eigenfunction.
13.2.24. D 0: x
2
y
00
2xy
0
C 2y D 0 is an Euler equation with indicial equation r.r 1/ 2r C2 D
.r 1/.r 2/ D 0. y D x.c
1
Cc
2
x/; y
0
D c
1
C2c
2
x; y.1/ D y
0
.2/ D 0 H) c
1
Cc
2
D c
1
C4c
2
D
0 H) c
1
D c
2
D 0, so D 0 i s not an eigenvalue.
D k
2
; k > 0: y D x.c
1
cosh k.x 1/ C c
2
sinh k.x 1//; y.1/ D 0 H) c
1
D 0; y D
c
2
x sin h k.x 1/; y
0
D c
2
.sinh k.x1/Ckx cosh k.x 1//; y
0
.2/ D 0 H) c
2
.sinh k Ck cosh k/ H)
c
2
D 0; is not an eigenvalue.
D k
2
; k > 0: y D x.c
1
cos k.x1/Cc
2
sin k.x1//; y.1/ D 0 H) c
1
D 0; y D c
2
x sin k.x1/;
y
0
D c
2
.sin k.x 1/ C kx cos k.x 1//; y
0
.2/ D 0 with c
2
¤ 0 if and only if sin k C 2k cos k D 0
or, equivalently, tan k D 2k. Graphing both sides of this equation on the same axes shows that it has a
solution k
n
in ..2n 1/=2; n/, n D 1, 2,3, . . . ; y
n
D x sin k
n
.x 1/ is a k
2
n
-eigenfunction.
13.2.26. D 0: y D c
1
Cc
2
x. The bound ary conditions require that c
1
C˛c
2
D 0 and c
1
C. C˛/c
2
D
0, so c
1
D c
2
D 0. Therefore D 0 is not an eigenvalue of (A).
D k
2
, k > 0: y D c
1
cosh kx C c
2
sinh kx; y
0
D k.c
1
sinh kx C c
2
cosh kx/. The boundary
conditions require that
c
1
C˛kc
2
D 0
.cosh k C ˛k sinh k/c
1
C .sinh k C ˛k cosh k/c
2
D 0:
(D)
This system has a nontrivial solution if and only if .1k
2
˛
2
/ sinh k D 0, which holds with k > 0 if and
only if k
2
D ˙1. Therefore D 1=˛
2
is the only negative eig envalue. We can choose k D ˙1.
Either way, the first equation in (D) implies that e
x=˛
is an associated eigenfunction.
D k
2
, k > 0: y D c
1
cos kx Cc
2
sin kx; y
0
D k.c
1
sin kx Cc
2
cos kx/. The boundary conditions
require th at
c
1
C˛kc
2
D 0
.cos k ˛k sin k /c
1
C .sin k C ˛k cos k/c
2
D 0:
(E)
This system h as a nontrivial solution if and o nly if .1 C k
2
˛
2
/ sin k D 0. Choosing k D n produces
eigenvalues
n
D n
2
2
. Setting k D n in the first equation in (E) yields c
1
C ˛ nc
2
D 0, so y
n
D
cos nx sin nx.
Section 13.2
Sturm-Liouville Problems
283
13.2.28. y D c
1
C c
2
x. The boundary conditions require that
˛c
1
C ˇc
2
D 0 and c
1
C .L C ı/c
2
D 0.
This system has a nontrivial solution if and only if ˛.L C ı/ ˇ D 0.
13.2.30. (a) y D c
1
cos kx C c
2
sin kx; y
0
D k.c
1
sin kx C c
2
cos kx/. The bou ndary cond itions
require th at
˛c
1
C ˇkc
2
D 0 and . cos kL ık sin kL/c
1
C . sin kL C ık cos kL/c
2
D 0.
This system has a nontrivial solution if and only if its determinant is zero. This implies the conclusio n.
(b) If ˛ı ˇ D 0, (A) reduces to
.˛ C k
2
ˇı/ sin kL D 0: (B)
From the solution of Exercise 13.2.29(b), ˛ C k
2
ˇı > 0 for all k > 0. Therefore the positive zeros o f
(B) are k
n
D n=L, n D 1, 2, 3, . . . , so the positive eigenvalues (SL) are
n
D n
2
2
=L
2
, n D 1, 2, 3,
. . . .
13.2.32. Suppose is an eigenvalue and y is an associated eigenfunction. From the solution of Exer-
cise 13.2.31,
Z
b
a
r.x/y
2
.x/ dx D p.a/y.a/y
0
.a/ p.b/y.b/y
0
.b/ C
Z
b
a
p.x/.y
0
.x//
2
dx: (A)
If ˛ˇ D 0 then either y.a/ D 0 or y
0
.a/ D 0, so y.a/y
0
.a/ D 0. If ˛ˇ < 0 then y.a/ D
ˇ
˛
y
0
.a/, so
y.a/y
0
.a/ D
ˇ
˛
.y
0
.a//
2
: (B)
Moreover, y
0
.a/ ¤ 0 because if y
0
.a/ D 0 then y.a/ D 0, from (B), and y 0, a contradiction. Si nce
ˇ
˛
> 0 if ˛ˇ < 0, we conclude that if ˛ˇ 0, then
p.a/y.a/y
0
.a/ 0; (C)
with equality if and only if ı D 0. A similar arg ument shows that if ı 0, then
p.b/y.b/y
0
.b/ 0; (D)
with equality if and only if ˛ˇ D 0. Since ˇ/
2
C .ı/
2
> 0, the inequality must hold in at least one of
(C) and (D). Now (A) implies that > 0.